A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 a...A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 and EPA6N at temperatures of 225 and 235 ℃ were investigated.The results of transmission electron microscopy(TEM) and atomic force microscopy(AFM) indicate that the silica particles are well dispersed in the polyamide 6 matrix on about 30 nm in diameter,which demonstrates that this method can effectively avoid agglomeration of the inorganic particles.The rheological results suggest that pure PA6 shows Newtonian behavior.However,the novel EPA6N exhibits a solid-like rheological behavior,which is due to the small size,large surface of silica particles and the stronger polyamide 6-silica chemical bond formed through the reactions of epoxy resins with end groups of PA6 molecular chains.The EPA6N also exhibits higher melt viscosity,storage modulus and loss modulus than those of pure PA6.展开更多
Surface coating technology is an effective way to solve the interface insulation problem of DC GIS/GIL basin insulators, but the performance of the coating will change greatly, and the insulation strength will be comp...Surface coating technology is an effective way to solve the interface insulation problem of DC GIS/GIL basin insulators, but the performance of the coating will change greatly, and the insulation strength will be completely lost, after long-term use in the extreme conditions of corona erosion. In this research, the multi-needle-plate electrode platform was constructed to explore the long-term use performance of Si C-doped nanocomposite exposed to corona discharge in SF6gas. Samples with a high Si C content have advantages in maintaining physical and chemical properties such as elemental composition, erosion depth, surface roughness and mass loss. The nanocomposite doped with 6 wt.% Si C has prominent surface insulation strength after long term exposure to corona, and the others are close to losing, or have completely lost,their insulating properties. Furthermore, the degradation mechanism of physicochemical properties of composite exposed to corona discharge was investigated with the proposed Reax FF MD model of energetic particles from SF6decomposition bombarding the epoxy surface. The reaction process of SF particles and F particles with the cross-linked epoxy resin, and the Si C nanoparticles providing shelter to the surrounding polymer and mitigating their suffering direct bombardment, have been established. The damage propagation depth, mass loss and surface roughness change of nanocomposite material bombarded by SF6decomposition products is reproduced in this simulation. Finally, the deterioration mechanism of insulation properties for the Si C-doped composite was elucidated with DFT analysis. The band gap of the molecule containing S drops directly from the initial 7.785 e V to 1.875 e V, which causes the deterioration of surface electric properties.展开更多
基金Project(07A071) supported by the Scientific Research Foundation of Hunan Provincial Education Department
文摘A novel polyamide 6/silica nanocomposite containing epoxy resins(EPA6N) was prepared via in situ polymerization using tetraethoxysilane(TEOS) as the precursor of silica.The dynamic rheological properties of pure PA6 and EPA6N at temperatures of 225 and 235 ℃ were investigated.The results of transmission electron microscopy(TEM) and atomic force microscopy(AFM) indicate that the silica particles are well dispersed in the polyamide 6 matrix on about 30 nm in diameter,which demonstrates that this method can effectively avoid agglomeration of the inorganic particles.The rheological results suggest that pure PA6 shows Newtonian behavior.However,the novel EPA6N exhibits a solid-like rheological behavior,which is due to the small size,large surface of silica particles and the stronger polyamide 6-silica chemical bond formed through the reactions of epoxy resins with end groups of PA6 molecular chains.The EPA6N also exhibits higher melt viscosity,storage modulus and loss modulus than those of pure PA6.
基金supported by National Natural Science Foundation of China(Nos.51737005,51929701,52177147 and 52127812)。
文摘Surface coating technology is an effective way to solve the interface insulation problem of DC GIS/GIL basin insulators, but the performance of the coating will change greatly, and the insulation strength will be completely lost, after long-term use in the extreme conditions of corona erosion. In this research, the multi-needle-plate electrode platform was constructed to explore the long-term use performance of Si C-doped nanocomposite exposed to corona discharge in SF6gas. Samples with a high Si C content have advantages in maintaining physical and chemical properties such as elemental composition, erosion depth, surface roughness and mass loss. The nanocomposite doped with 6 wt.% Si C has prominent surface insulation strength after long term exposure to corona, and the others are close to losing, or have completely lost,their insulating properties. Furthermore, the degradation mechanism of physicochemical properties of composite exposed to corona discharge was investigated with the proposed Reax FF MD model of energetic particles from SF6decomposition bombarding the epoxy surface. The reaction process of SF particles and F particles with the cross-linked epoxy resin, and the Si C nanoparticles providing shelter to the surrounding polymer and mitigating their suffering direct bombardment, have been established. The damage propagation depth, mass loss and surface roughness change of nanocomposite material bombarded by SF6decomposition products is reproduced in this simulation. Finally, the deterioration mechanism of insulation properties for the Si C-doped composite was elucidated with DFT analysis. The band gap of the molecule containing S drops directly from the initial 7.785 e V to 1.875 e V, which causes the deterioration of surface electric properties.