The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remain...The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remains unclear.Retrovirnl vector pSEB61 was retroftted in established HCT116 siKCN and SW480-siKCN cells to silence KCNQ1 OT1.Cellular proliferation was measured using CCK8 assay,and flow cytometry(FCM)detected cell cydle changes.RNA sequencing(RNA Seq)analysis showed differentially expressed genes(DEGs).Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were carried out to analyze enriched functions and signaling pathways.RT-qPCR,immunofluorescence,and western blotting were carried out to validate downstream gene expressions.The effects of tumorigenesis were evaluated in BALB/c nude mice by tumor xenografts.Our data revealed that the silencing of KONQ1OT1 in HCT116 and SW480 cells slowed cell growth and decreased the number of cells in the G2/M phase.RNA-Seq analysis showed the data of DEGs enriched in various GO and KEGG pathways such as DNA replication and cell cyde.RT qPCR,immunofluorescence,and western blotting confirmed downstream CCNE2 and PCNA gene expressions.HCT116 siKCN cells signifcantly suppressed tumorigenesis in BALB/c nude mice.Our study suggests that lncRNA KCNQ1OT1 may provide a promising therapeutic strategy for colon cancer.展开更多
Objective:To evaluate the efficacy of ponatinib plus gossypol against colorectal cancer HCT-116 and Caco-2 cells.Methods:Cells were treated with ponatinib and/or gossypol at increasing concentrations to evaluate syner...Objective:To evaluate the efficacy of ponatinib plus gossypol against colorectal cancer HCT-116 and Caco-2 cells.Methods:Cells were treated with ponatinib and/or gossypol at increasing concentrations to evaluate synergistic drug interactions by combination index.Cell viability,FGF19/FGFR4,and apoptotic and autophagic cell death were studied.Results:Ponatinib(1.25-40μM)and gossypol(2.5-80μM)monotherapy inhibited HCT-116 and Caco-2 cell viability in a doseand time-dependent manner.The combination of ponatinib and gossypol at a ratio of 1 to 2 significantly decreased cell viability(P<0.05),with a>2-and>4-fold reduction in IC50,respectively,after 24 h and 48 h,as compared to the IC50 of ponatinib.Lower combined concentrations showed greater synergism(combination index<1)with a higher ponatinib dose reduction index.Moreover,ponatinib plus gossypol induced morphological changes in HCT-116and Caco-2 cells,increased beclin-1 and caspase-3,and decreased FGF19,FGFR4,Bcl-2 and p-Akt as compared to treatment with drugs alone.Conclusions:Gossypol enhances ponatinib's anticancer effects against colorectal cancer cells through antiproliferative,apoptotic,and autophagic mechanisms.This may open the way for the future use of ponatinib at lower doses with gossypol as a potentially safer targeted strategy for colorectal cancer treatment.展开更多
EZH2 is over-expressed in human colon cancer and is closely associated with tumor proliferation,metastasis and poor prognosis.Targeting and inhibiting EZH2 may be an effective therapeutic strategy for colon cancer.3-D...EZH2 is over-expressed in human colon cancer and is closely associated with tumor proliferation,metastasis and poor prognosis.Targeting and inhibiting EZH2 may be an effective therapeutic strategy for colon cancer.3-Deazaneplanocin A(DZNep),as an EZH2 inhibitor,can suppress cancer cell growth.However,the anti-cancer role of DZNep in colon cancer cells has been rarely studied.In this study,we demonstrate that DZNep can inhibit the growth and survival of colon cancer HCT116 cells by inducing cellular senescence and apoptosis.The study provides a novel view of anti-cancer mechanisms of DZNep in human colon cancer cells.展开更多
基金the Scientific Research Project of Anhui Provincial Health Commission in 2021(#AHWJ2021b109 to LS)Scientific and Technological Research Program of Chongqing Municipal Education Commission(#KJZD-K201900402 to TZ)+1 种基金Special Fund for Wannan Medical College Scholar Project(#WK2021F07)Educational Commission of Anhui Province of China(2022AH051241).
文摘The role of lncRNA KCNQ1 opposite strand/antisense transcript 1(KCNQ1OT1)in colon cancer involves various tumorigenic processes and has been studed widely.However,the mechanism by which it promotes colon cancer remains unclear.Retrovirnl vector pSEB61 was retroftted in established HCT116 siKCN and SW480-siKCN cells to silence KCNQ1 OT1.Cellular proliferation was measured using CCK8 assay,and flow cytometry(FCM)detected cell cydle changes.RNA sequencing(RNA Seq)analysis showed differentially expressed genes(DEGs).Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses were carried out to analyze enriched functions and signaling pathways.RT-qPCR,immunofluorescence,and western blotting were carried out to validate downstream gene expressions.The effects of tumorigenesis were evaluated in BALB/c nude mice by tumor xenografts.Our data revealed that the silencing of KONQ1OT1 in HCT116 and SW480 cells slowed cell growth and decreased the number of cells in the G2/M phase.RNA-Seq analysis showed the data of DEGs enriched in various GO and KEGG pathways such as DNA replication and cell cyde.RT qPCR,immunofluorescence,and western blotting confirmed downstream CCNE2 and PCNA gene expressions.HCT116 siKCN cells signifcantly suppressed tumorigenesis in BALB/c nude mice.Our study suggests that lncRNA KCNQ1OT1 may provide a promising therapeutic strategy for colon cancer.
基金financial support from the Theodor Bilharz Research InstituteWarrak El-Hadar+1 种基金ImbabaGiza 12411,Egypt。
文摘Objective:To evaluate the efficacy of ponatinib plus gossypol against colorectal cancer HCT-116 and Caco-2 cells.Methods:Cells were treated with ponatinib and/or gossypol at increasing concentrations to evaluate synergistic drug interactions by combination index.Cell viability,FGF19/FGFR4,and apoptotic and autophagic cell death were studied.Results:Ponatinib(1.25-40μM)and gossypol(2.5-80μM)monotherapy inhibited HCT-116 and Caco-2 cell viability in a doseand time-dependent manner.The combination of ponatinib and gossypol at a ratio of 1 to 2 significantly decreased cell viability(P<0.05),with a>2-and>4-fold reduction in IC50,respectively,after 24 h and 48 h,as compared to the IC50 of ponatinib.Lower combined concentrations showed greater synergism(combination index<1)with a higher ponatinib dose reduction index.Moreover,ponatinib plus gossypol induced morphological changes in HCT-116and Caco-2 cells,increased beclin-1 and caspase-3,and decreased FGF19,FGFR4,Bcl-2 and p-Akt as compared to treatment with drugs alone.Conclusions:Gossypol enhances ponatinib's anticancer effects against colorectal cancer cells through antiproliferative,apoptotic,and autophagic mechanisms.This may open the way for the future use of ponatinib at lower doses with gossypol as a potentially safer targeted strategy for colorectal cancer treatment.
基金co-sponsored by Sino-Singapore Collaboration Project from the Ministry of Science and Technology (MOST) of China (No.2013DFG32990)National Natural Science Foundation of China (NSFC Nos.81373438 and 31201040)National Mega-Project for Innovative Drugs by MOST (No.2012ZX09301002-001-015)
文摘EZH2 is over-expressed in human colon cancer and is closely associated with tumor proliferation,metastasis and poor prognosis.Targeting and inhibiting EZH2 may be an effective therapeutic strategy for colon cancer.3-Deazaneplanocin A(DZNep),as an EZH2 inhibitor,can suppress cancer cell growth.However,the anti-cancer role of DZNep in colon cancer cells has been rarely studied.In this study,we demonstrate that DZNep can inhibit the growth and survival of colon cancer HCT116 cells by inducing cellular senescence and apoptosis.The study provides a novel view of anti-cancer mechanisms of DZNep in human colon cancer cells.