With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environmen...With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.展开更多
A new method of preparing potassium metaphophate(KPO3) was proposed.NH4H2PO4 and KCl are sufficiently mixed in a certain proportion,and heated for 2h at 450℃-480℃.After the reaction ends,the by-product NH4Cl was mov...A new method of preparing potassium metaphophate(KPO3) was proposed.NH4H2PO4 and KCl are sufficiently mixed in a certain proportion,and heated for 2h at 450℃-480℃.After the reaction ends,the by-product NH4Cl was moved away by sublimation.展开更多
In this paper,a novel compound was developed by mixing H_(3)PO_(4)-modified cauliflower leaves hydrochar(CLH)and coal gangue-based Na-X zeolite(ZL).An alkaline soil contaminated with cadmium(Cd)and lead(Pb)was amended...In this paper,a novel compound was developed by mixing H_(3)PO_(4)-modified cauliflower leaves hydrochar(CLH)and coal gangue-based Na-X zeolite(ZL).An alkaline soil contaminated with cadmium(Cd)and lead(Pb)was amended through the individual and synergistic application of CLH and ZL(1%CLH,2%CLH,1%ZL,2%ZL and 1%CLH+1%ZL),and Chinese cabbage was grown on it.Individual application of CLH was superior to ZL on decreasing the pH of alkaline soil and increasing soil available phosphorus(Olsen-P)and soil organic matter(SOM).In contrast,their combined application significantly improved the soil cation exchange capacity(CEC).Besides,the 1%CLH+1%ZL was the most efficient treatment in decreasing diethylenetriamine pentaacetate(DTPA)-extractable Cd/Pb and concentrations of these two metals in cabbage root and shoot.Their synergistic application could better increase Cd and Pb immobilization and cabbage yield than their alone application.Furthermore,the immobilization of Pb for all treatments was higher than that of Cd.The synergistic immobilization mechanism of CLH and ZL reflected that the CLH precipitated and complexed with these two metals,which may block the pores of hydrochar or wrap on the surface of hydrochar.So the continuous adsorption and complexation were prevented.Nevertheless,ZL could probably alleviate this obstacle.This finding provides helpful information about using CLH combined with ZL as a soil stabilizer to immobilize heavy metals in contaminated alkaline soil.展开更多
Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structura...Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.展开更多
A long wavelength emission fluorescent(612 nm)chemosensor with high selectivity for H_(2)PO_(4)^(−)ions was designed and synthesized according to the excited state intramolecular proton transfer(ESIPT).The sensor can ...A long wavelength emission fluorescent(612 nm)chemosensor with high selectivity for H_(2)PO_(4)^(−)ions was designed and synthesized according to the excited state intramolecular proton transfer(ESIPT).The sensor can exist in two tautomeric forms(‘keto’and‘enol’)in the presence of Fe^(3+)ion,Fe^(3+)may bind with the‘keto’form of the sensor.Furthermore,the in situ generated GY-Fe^(3+)ensemble could recover the quenched fluorescence upon the addition of H_(2)PO_(4)^(−)anion resulting in an off-on-type sensing with a detection limit of micromolar range in the same medium,and other anions,including F^(−),Cl^(−),Br^(−),I^(−),AcO^(−),HSO^(−)_(4),ClO^(−)_(4)and CN−had nearly no influence on the probing behavior.The test strips based on 2-[2-hydroxy-4-(diethylamino)phenyl]-1H-imidazo[4,5-b]phenazine and Fe^(3+)metal complex(GY-Fe^(3+))were fabricated,which could act as convenient and efficient H_(2)PO_(4)^(−)test kits.展开更多
基金supported by the National Natural Science Foundation of China (No.52364022)the Natural Science Foundation of Guangxi Province,China (Nos.2023JJA160192 and 2021GXNSFAA220096)+1 种基金the Guangxi Science and Technology Major Project,China (No.AA23073018)the Guangxi Chongzuo Science and Technology Plan,China (No.2023ZY00503).
文摘With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(Ⅵ) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(Ⅵ). The waste amidoxime resin was first modified with H3PO4 and ZnCl_(2), and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(Ⅵ) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(Ⅵ) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(Ⅵ) to Cr(Ⅲ) and decrease the toxicity of Cr(Ⅵ) during adsorption. PPR-Z exhibited Cr(Ⅵ) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(Ⅵ) adsorption are the chemical reduction of Cr(Ⅵ) into Cr(Ⅲ) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(Ⅵ) pollution and realizes the concept of “treating waste with waste”.
文摘A new method of preparing potassium metaphophate(KPO3) was proposed.NH4H2PO4 and KCl are sufficiently mixed in a certain proportion,and heated for 2h at 450℃-480℃.After the reaction ends,the by-product NH4Cl was moved away by sublimation.
基金This work was financially supported by the National Natural Science Foundation of China(No.21701099)the Science and Technology Innovation Project of Colleges and Universities of Shanxi Province in 2020(No.2020L0721)the Basic Research Project of Shanxi Province,China(No.201801D121267).
文摘In this paper,a novel compound was developed by mixing H_(3)PO_(4)-modified cauliflower leaves hydrochar(CLH)and coal gangue-based Na-X zeolite(ZL).An alkaline soil contaminated with cadmium(Cd)and lead(Pb)was amended through the individual and synergistic application of CLH and ZL(1%CLH,2%CLH,1%ZL,2%ZL and 1%CLH+1%ZL),and Chinese cabbage was grown on it.Individual application of CLH was superior to ZL on decreasing the pH of alkaline soil and increasing soil available phosphorus(Olsen-P)and soil organic matter(SOM).In contrast,their combined application significantly improved the soil cation exchange capacity(CEC).Besides,the 1%CLH+1%ZL was the most efficient treatment in decreasing diethylenetriamine pentaacetate(DTPA)-extractable Cd/Pb and concentrations of these two metals in cabbage root and shoot.Their synergistic application could better increase Cd and Pb immobilization and cabbage yield than their alone application.Furthermore,the immobilization of Pb for all treatments was higher than that of Cd.The synergistic immobilization mechanism of CLH and ZL reflected that the CLH precipitated and complexed with these two metals,which may block the pores of hydrochar or wrap on the surface of hydrochar.So the continuous adsorption and complexation were prevented.Nevertheless,ZL could probably alleviate this obstacle.This finding provides helpful information about using CLH combined with ZL as a soil stabilizer to immobilize heavy metals in contaminated alkaline soil.
文摘Objective To study the structural and anticorrosive property of microcrystalline α-Zn_3(PO_4)_2·4H_2O. Methods Zinc phosphate was prepared from zinc acetate and orthophosphate acid in aqueous solution. Structural characteristics of products were investigated by XRD, RAMAN, FTIR, TG-DTA, SEM, surface area, particle size distribution, and density measurements. Results The title compound, a highly crystalline, micronized and lamellar α-Zn_3(PO_4)_2·4H_2O, has an orthorhombic monoclinic system, space group a_0=10.597(),b_ 0 =18.308(), c_ 0 =5.0304(), V=975.86 3. Its specific area is 0.701m2/g, density 3.1612g/m3, and average size 4.75μm . Conclusion Comparing with commercial Zinc phosphate, the synthesized lamellar microcrystalline zinc phosphate had excellent anticorrosive property and dispersibility.
基金This work was supported by the National Natural Science Foundation of China(Nos.21064006,21262032 and 21161018)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT1177)+2 种基金the Natural Science Foundation of Gansu Province(No.1010RJZA018)the Youth Foundation of Gansu Province(No.2011GS04735)NWNU-LKQN-11-32.
文摘A long wavelength emission fluorescent(612 nm)chemosensor with high selectivity for H_(2)PO_(4)^(−)ions was designed and synthesized according to the excited state intramolecular proton transfer(ESIPT).The sensor can exist in two tautomeric forms(‘keto’and‘enol’)in the presence of Fe^(3+)ion,Fe^(3+)may bind with the‘keto’form of the sensor.Furthermore,the in situ generated GY-Fe^(3+)ensemble could recover the quenched fluorescence upon the addition of H_(2)PO_(4)^(−)anion resulting in an off-on-type sensing with a detection limit of micromolar range in the same medium,and other anions,including F^(−),Cl^(−),Br^(−),I^(−),AcO^(−),HSO^(−)_(4),ClO^(−)_(4)and CN−had nearly no influence on the probing behavior.The test strips based on 2-[2-hydroxy-4-(diethylamino)phenyl]-1H-imidazo[4,5-b]phenazine and Fe^(3+)metal complex(GY-Fe^(3+))were fabricated,which could act as convenient and efficient H_(2)PO_(4)^(−)test kits.