对humanether-a-gò-gò related genes(HERG)钾离子通道(钾通道)抑制剂,计算了表征分子组成、电荷分布、拓扑、几何结构及物理化学性质等特征的1559个分子描述符,采用Fischer Score(F-Score)排序过滤和MonteCarlo模拟退火法相...对humanether-a-gò-gò related genes(HERG)钾离子通道(钾通道)抑制剂,计算了表征分子组成、电荷分布、拓扑、几何结构及物理化学性质等特征的1559个分子描述符,采用Fischer Score(F-Score)排序过滤和MonteCarlo模拟退火法相结合从中筛选与HERG钾通道抑制剂分类相关的分子描述符.采用支持向量机(SVM)方法,分别以IC50=1.0、10.0μmol·L-1为分类标准,建立了三个分类预测模型.对367个训练集分子,用五重交叉验证,得到正、负样本的平均预测精度分别为84.8%-96.6%、80.7%-97.7%,其总的平均预测精度为87.1%-97.2%,优于其它文献报道结果.对97个外部测试集分子,所建三个模型的总样本预测精度在67.0%-90.1%之间,接近或优于其它文献报道结果.展开更多
文摘对humanether-a-gò-gò related genes(HERG)钾离子通道(钾通道)抑制剂,计算了表征分子组成、电荷分布、拓扑、几何结构及物理化学性质等特征的1559个分子描述符,采用Fischer Score(F-Score)排序过滤和MonteCarlo模拟退火法相结合从中筛选与HERG钾通道抑制剂分类相关的分子描述符.采用支持向量机(SVM)方法,分别以IC50=1.0、10.0μmol·L-1为分类标准,建立了三个分类预测模型.对367个训练集分子,用五重交叉验证,得到正、负样本的平均预测精度分别为84.8%-96.6%、80.7%-97.7%,其总的平均预测精度为87.1%-97.2%,优于其它文献报道结果.对97个外部测试集分子,所建三个模型的总样本预测精度在67.0%-90.1%之间,接近或优于其它文献报道结果.