The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the am...The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the amplitude of the magnetic field B are varied. The thermal entanglement of the nearest neighbour always declines when B increases no matter what the value of the anisotropy is. It is very interesting to note that the entanglement of the next-nearest neighbour can increase to a maximum at a certain magnetic field. Regardless of the boundary condition, the nearestneighbour entanglement always decreases and approaches to a constant value when the size of the system is very large. The constant value of open boundary condition is much larger than that of periodic boundary condition.展开更多
To reveal how the decoherence modifies the time evolution of the entanglement of quantum system, the intrinsic decoherence approach and the entanglement of formation are used, and the time evolution of entanglement fo...To reveal how the decoherence modifies the time evolution of the entanglement of quantum system, the intrinsic decoherence approach and the entanglement of formation are used, and the time evolution of entanglement for two-qubit 1D quantum Heisenberg model in an external uniform magnetic field is derived. It is shown that the external magnetic field can strengthen the effects of the intrinsic decoherence on the entanglement of the system.展开更多
We investigate the quantum discord of a two-qubit anisotropy XXZ Heisenberg chain with Dzyaloshinskii-Moriya (DM) interaction under magnetic field. It is shown that the quantum discord highly depends on the system’s ...We investigate the quantum discord of a two-qubit anisotropy XXZ Heisenberg chain with Dzyaloshinskii-Moriya (DM) interaction under magnetic field. It is shown that the quantum discord highly depends on the system’s temperature T, DM interaction D, homogenous magnetic field B and the anisotropy Δ. For lower temperature T, by modulating D and B, the quantum discord can be controlled and the quantum discord switch can be realized.展开更多
In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase tr...In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase transitions in the q1D antiferromagnetic(AFM) compound YbAlO3, we study the phase diagram of spin-1/2 Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations,and investigate the role of the spin anisotropy of the interchain coupling on the ground state of the system. We find that the Ising anisotropy of the interchain coupling can significantly enhance the longitudinal spin correlations and drive the system to an incommensurate AFM phase at intermediate magnetic fields, which is understood as a longitudinal spin density wave(LSDW). With increasing field, the ground state changes to a canted AFM order with transverse spin correlations. We further provide a global phase diagram showing how the competition between the LSDW and the canted AFM states is tuned by the Ising anisotropy of the interchain coupling.展开更多
We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net ...We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.展开更多
Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entangl...Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.展开更多
Taking the intrinsic decoherence effect into account, the entanglement ofa two-qubit anisotropic Heisenberg XYZ chain in the presence of the Dzyaloshinski Moriya (DM) anisotropic antisymetric interaction is investig...Taking the intrinsic decoherence effect into account, the entanglement ofa two-qubit anisotropic Heisenberg XYZ chain in the presence of the Dzyaloshinski Moriya (DM) anisotropic antisymetric interaction is investigated in this paper. Concurrence, the measurement of entanglement, is calculated. Compared with the anisotropic in XY plane, the DM interaction is another kind of anisotropic antisymmetrie exchange interaction. It is shown that the intrinsic decoherence obviously suppresses the time evolution of the entanglement. The DM interaction only acts on the time evolution of the entanglement when the initial state is [ψ(0)〉 = cosα|01〉 + sinα|10〉 and weakens the degree of entanglement. The anisotropic in XY plane merely impacts on the time evolution of the entanglement when the system & initially in a state |ψ(0)〉 = cos α|00〉 + sin α|11 〉. The sufficiently weak anisotropic in XY plane can effectively enhance the degree of entanglement.展开更多
Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg XX chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsi...Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg XX chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsic decoherence on quantum entanglement and quantum teleportation exerts different effects in different initial systems, proper magnetic fields and probabilities of different eigenstates in the initial states can weaken the effects.展开更多
We investigate the teleportation of an entangled state via a couple of quantum channels, which are composed of a spin-1/2 Heisenberg dimer in two infinite Ising–Heisenberg chains. The heterotrimetallic coordination p...We investigate the teleportation of an entangled state via a couple of quantum channels, which are composed of a spin-1/2 Heisenberg dimer in two infinite Ising–Heisenberg chains. The heterotrimetallic coordination polymer CuⅡMnⅡ(L1)][FeⅢ(bpb)(CN)2]·ClO4·H2O(abbreviated as Fe–Mn–Cu) can be regarded as an actual material for this chain.We apply the transfer-matrix approach to obtain the density operator for the Heisenberg dimer and use the standard teleportation protocol to derive the analytical expression of the density matrix of the output state and the average fidelity of the entanglement teleportation. We study the effects of the temperature T, anisotropy coupling parameter △, Heisenberg coupling parameter J2 and external magnetic field h on the quantum channels. The results show that anisotropy coupling? and Heisenberg coupling J2 can favor the generation of the output concurrence and expand the scope of the successful average fidelity.展开更多
In this paper we study the entanglement in a two-qubit spin in the XYZ model, and teleport a two-qubit entangled state using this spin chain in the condition of the thermal equilibrium as a quantum channel. We investi...In this paper we study the entanglement in a two-qubit spin in the XYZ model, and teleport a two-qubit entangled state using this spin chain in the condition of the thermal equilibrium as a quantum channel. We investigate the effects of the interaction of z-component Jz, the inhomogeneous magnetic field b, the anisotropy γ and the temperature T on the entanglement and fidelity. In order to characterize the quality of the teleported state, we research the average fidelity Fα. High average fidelity of the teleportation is obtained when the temperature is very low. Under some condition, we also find that when innomogeneity increases to a certain value, the average fidelity can exhibit a larger revival than that for less values of b.展开更多
The time evolution of entropy squeezing for the two-qubit XYZ Heisenberg model in an external uniform magnetic field is investigated in the language of quantum information. The effect of different parameters such as m...The time evolution of entropy squeezing for the two-qubit XYZ Heisenberg model in an external uniform magnetic field is investigated in the language of quantum information. The effect of different parameters such as magnetic field and anisotropy parameter on the properties of entropy squeezing and variance squeezing are discussed. It is shown that magnetic field and anisotropy parameter can enhance the entropy squeezing.展开更多
We calculate the eigenvalues and eigenvectors of a five-qubit isotropic Heisenberg model in an external magnetic field, and give analytical results for the concurrence of two nearest-neighbor qubits. A magnetic field ...We calculate the eigenvalues and eigenvectors of a five-qubit isotropic Heisenberg model in an external magnetic field, and give analytical results for the concurrence of two nearest-neighbor qubits. A magnetic field can eliminate degeneration and change the ground state of the system. Therefore increasing the value of the magnetic field can induce entanglement in a certain range both for the antiferromagnetic and ferromagnetic case.展开更多
The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisot...The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.展开更多
Taking the intrinsic decoherence effect into account, this paper investigates the entanglement of a two-qubit anisotropic Heisenberg XYZ model in the presence of nonuniform external magnetic fields by employing the co...Taking the intrinsic decoherence effect into account, this paper investigates the entanglement of a two-qubit anisotropic Heisenberg XYZ model in the presence of nonuniform external magnetic fields by employing the concurrence as entanglement measure. It is found that both the intrinsic decoherence and the anisotropy of the system give a significant suppression to the entanglement. Moreover it finds that the initial state of the system plays an important role in the time evolution of the entanglement, which means that the entanglement of the system is independent of the nonuniformity and uniformity of the magnetic field when the system is in the initial state |ψ (0)) = |00) and [ψ′ (0)) = m |01) + n |10), respectively.展开更多
In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the qua...In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.展开更多
This paper studies the average fidelity of teleportation and thermal entanglement for a two-qubit Heisenberg XYZ chain in the presence of both an inhomogeneous magnetic field and a Dzyaloshinski-Moriya interaction. It...This paper studies the average fidelity of teleportation and thermal entanglement for a two-qubit Heisenberg XYZ chain in the presence of both an inhomogeneous magnetic field and a Dzyaloshinski-Moriya interaction. It shows that for a fixed Dz, the increase of bz will broaden the critical temperature at the cost of decreasing the thermal entanglement. And it can modulate the inhomogeneous magnetic field and the Dzyaloshinski-Moriya interaction for the average fidelity of teleportation to be optimal.展开更多
We investigate the thermal entanglement in a spin-l/2 Ising-Heisenberg diamond chain, in which the vertical Heisen- berg spin dimers alternate with single Ising spins. Due to the fact that the Dzyaloshinskii-Moriya ...We investigate the thermal entanglement in a spin-l/2 Ising-Heisenberg diamond chain, in which the vertical Heisen- berg spin dimers alternate with single Ising spins. Due to the fact that the Dzyaloshinskii-Moriya (DM) interaction con- tributes to unusual and interesting magnetic properties in actual materials, and moreover it plays a significant role in the degree of the entanglement of the Heisenberg quantum spin systems, we focus on the effects of different DM interactions, including Dz and Dx, on the thermal entanglement of the Heisenberg spin dimer. The concurrence, as a measure of spin dimer entanglement, is calculated for different values of exchange interactions, DM interaction, external magnetic field, and temperature. It is found that the critical temperature and the critical magnetic field corresponding to the vanishing of entanglement increase with DM interaction, and the entanglement revival region gets larger by increasing DM interac- tion, thus DM interaction favors the formation of the thermal entanglement. It is observed that different DM interaction parameters (Dz and Dx) have remarkably different influences on the entanglement. Different from the case Dz, there is the non-monotonic variation of the concurrence with temperature in the case Dx, and additionally the DM interaction Dx can induce the entanglement near zero temperature in the case that the antiferromagnetic Ising-type interaction constant is larger than the antiferromagnetic Heisenberg interaction constant. It is also shown that for the same value of DM interaction the critical magnetic field of the case Dx is larger than that of the case Dz.展开更多
We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya(DM) interaction. The thermal quantum discord(TQD) and the thermal ent...We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya(DM) interaction. The thermal quantum discord(TQD) and the thermal entanglement(TE)are discussed as two kinds of important methods to measure the quantum correlation, respectively. It is found that DM interaction plays an important role in the thermal quantum correlations of the system. It can enhance the thermal quantum correlations by increasing DM interaction. Furthermore, the thermal quantum correlations can be promoted by tuning the external magnetic field and the Heisenberg coupling parameter in the antiferromagnetic system. It is shown that the behaviors of TQD differ from those of TE. TQD is more robust against decoherence than TE. For the measurement of TQD, the "regrowth" phenomenon occurs in the ferromagnetic system. We also find that the anisotropy favors the thermal quantum correlations of the system with weak DM interaction.展开更多
We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwis...We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwiseentanglement.Choosing the proper parameter J_i,we can obtain the maximal pairwise entanglement of the nearestqubits and make the non-nearest qubits entangle.展开更多
This paper investigates thermal entanglements of a two-qubit Heisenberg XY chain in the presence of the Dzyaloshinskii-Moriya anisotropic antisymmetric interaction. By the concept of concurrence, it is found that the ...This paper investigates thermal entanglements of a two-qubit Heisenberg XY chain in the presence of the Dzyaloshinskii-Moriya anisotropic antisymmetric interaction. By the concept of concurrence, it is found that the effects of spin-orbit coupling on the entanglement are different from those of spin-spin model. The analytical expressions of concurrence are obtained for this model.展开更多
文摘The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the amplitude of the magnetic field B are varied. The thermal entanglement of the nearest neighbour always declines when B increases no matter what the value of the anisotropy is. It is very interesting to note that the entanglement of the next-nearest neighbour can increase to a maximum at a certain magnetic field. Regardless of the boundary condition, the nearestneighbour entanglement always decreases and approaches to a constant value when the size of the system is very large. The constant value of open boundary condition is much larger than that of periodic boundary condition.
基金Sponsored bythe National Natural Science Foundation of China(10374007)
文摘To reveal how the decoherence modifies the time evolution of the entanglement of quantum system, the intrinsic decoherence approach and the entanglement of formation are used, and the time evolution of entanglement for two-qubit 1D quantum Heisenberg model in an external uniform magnetic field is derived. It is shown that the external magnetic field can strengthen the effects of the intrinsic decoherence on the entanglement of the system.
文摘We investigate the quantum discord of a two-qubit anisotropy XXZ Heisenberg chain with Dzyaloshinskii-Moriya (DM) interaction under magnetic field. It is shown that the quantum discord highly depends on the system’s temperature T, DM interaction D, homogenous magnetic field B and the anisotropy Δ. For lower temperature T, by modulating D and B, the quantum discord can be controlled and the quantum discord switch can be realized.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674392)the Ministry of Science and Technology of China,National Program on Key Research Project(Grant No.2016YFA0300504)the Research Funds of Remnin University of China(Grant No.18XNLG24).
文摘In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase transitions in the q1D antiferromagnetic(AFM) compound YbAlO3, we study the phase diagram of spin-1/2 Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations,and investigate the role of the spin anisotropy of the interchain coupling on the ground state of the system. We find that the Ising anisotropy of the interchain coupling can significantly enhance the longitudinal spin correlations and drive the system to an incommensurate AFM phase at intermediate magnetic fields, which is understood as a longitudinal spin density wave(LSDW). With increasing field, the ground state changes to a canted AFM order with transverse spin correlations. We further provide a global phase diagram showing how the competition between the LSDW and the canted AFM states is tuned by the Ising anisotropy of the interchain coupling.
文摘We study the ground-state information of one-dimensional Heisenberg chain with alternating D-term. Given the ground-state phase diagram, the ground-state energy and the entanglement entropy are obtained by tensor-net work algorithm. The phase transition points are shown in the entanglement entropy figure. The results are agreed with the phase diagram.
文摘Taking the intrinsic decoherence effect into account, we investigate the time evolution of entanglement for two-qubit XYZ Heisenberg model in an external uniform magnetic field. Concurrence, the measurement of entanglement,is calculated. We show how the intrinsic decoherence modifies the time evolution of the entanglement and find that at short-time case, concurrence is oscillating as increasing magnetic field, which implies that entanglement may be enhanced or weakened in some time regions.
基金supported by the Natural Science Foundation of Hunan Province under Grant No. 06JJ50118
文摘Taking the intrinsic decoherence effect into account, the entanglement ofa two-qubit anisotropic Heisenberg XYZ chain in the presence of the Dzyaloshinski Moriya (DM) anisotropic antisymetric interaction is investigated in this paper. Concurrence, the measurement of entanglement, is calculated. Compared with the anisotropic in XY plane, the DM interaction is another kind of anisotropic antisymmetrie exchange interaction. It is shown that the intrinsic decoherence obviously suppresses the time evolution of the entanglement. The DM interaction only acts on the time evolution of the entanglement when the initial state is [ψ(0)〉 = cosα|01〉 + sinα|10〉 and weakens the degree of entanglement. The anisotropic in XY plane merely impacts on the time evolution of the entanglement when the system & initially in a state |ψ(0)〉 = cos α|00〉 + sin α|11 〉. The sufficiently weak anisotropic in XY plane can effectively enhance the degree of entanglement.
基金Acknowledgments We would like to thank Z.H. He's wife for helpful discussion and his newly born baby Yiyi for her powerful inspiration. We are grateful to Southwest University for the financial support on this project under Grant No. SWNUQ2004019.
文摘Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg XX chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsic decoherence on quantum entanglement and quantum teleportation exerts different effects in different initial systems, proper magnetic fields and probabilities of different eigenstates in the initial states can weaken the effects.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the teleportation of an entangled state via a couple of quantum channels, which are composed of a spin-1/2 Heisenberg dimer in two infinite Ising–Heisenberg chains. The heterotrimetallic coordination polymer CuⅡMnⅡ(L1)][FeⅢ(bpb)(CN)2]·ClO4·H2O(abbreviated as Fe–Mn–Cu) can be regarded as an actual material for this chain.We apply the transfer-matrix approach to obtain the density operator for the Heisenberg dimer and use the standard teleportation protocol to derive the analytical expression of the density matrix of the output state and the average fidelity of the entanglement teleportation. We study the effects of the temperature T, anisotropy coupling parameter △, Heisenberg coupling parameter J2 and external magnetic field h on the quantum channels. The results show that anisotropy coupling? and Heisenberg coupling J2 can favor the generation of the output concurrence and expand the scope of the successful average fidelity.
基金the Special Research Foundation for the Doctoral Program of Higher Education under Grant No.20050285002the Natural Science Foundation of Jiangsu Province under Grant No.04KJB140119
文摘In this paper we study the entanglement in a two-qubit spin in the XYZ model, and teleport a two-qubit entangled state using this spin chain in the condition of the thermal equilibrium as a quantum channel. We investigate the effects of the interaction of z-component Jz, the inhomogeneous magnetic field b, the anisotropy γ and the temperature T on the entanglement and fidelity. In order to characterize the quality of the teleported state, we research the average fidelity Fα. High average fidelity of the teleportation is obtained when the temperature is very low. Under some condition, we also find that when innomogeneity increases to a certain value, the average fidelity can exhibit a larger revival than that for less values of b.
基金Sponsored by the National Natural Science Foundation of China(10374007)
文摘The time evolution of entropy squeezing for the two-qubit XYZ Heisenberg model in an external uniform magnetic field is investigated in the language of quantum information. The effect of different parameters such as magnetic field and anisotropy parameter on the properties of entropy squeezing and variance squeezing are discussed. It is shown that magnetic field and anisotropy parameter can enhance the entropy squeezing.
基金project upported by National Natural Science Foundation of China under Grant No.10774108
文摘We calculate the eigenvalues and eigenvectors of a five-qubit isotropic Heisenberg model in an external magnetic field, and give analytical results for the concurrence of two nearest-neighbor qubits. A magnetic field can eliminate degeneration and change the ground state of the system. Therefore increasing the value of the magnetic field can induce entanglement in a certain range both for the antiferromagnetic and ferromagnetic case.
基金Supported by the Special Research Fund Provided by the Chonnam National University
文摘The quantum teleportation with the entangled thermai state is investigated based on the completely anisotropie Heisenberg chain in the presence of the externally inhomogeneous magnetic field. The effects of the anisotropy and magnetic field for the quantum fidelity are studied in detail The zero temperature limit and the features of the nonzero temperature for this nonclassical fdelity are obtained. We find that the quantum teleportation demands more stringent conditions than the therma/ entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the criticai temperature of the maximai teleportation fidelity. The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB921604)the National Natural Science Foundation of China (Grant Nos 60708003,60578050 and 10434060)
文摘Taking the intrinsic decoherence effect into account, this paper investigates the entanglement of a two-qubit anisotropic Heisenberg XYZ model in the presence of nonuniform external magnetic fields by employing the concurrence as entanglement measure. It is found that both the intrinsic decoherence and the anisotropy of the system give a significant suppression to the entanglement. Moreover it finds that the initial state of the system plays an important role in the time evolution of the entanglement, which means that the entanglement of the system is independent of the nonuniformity and uniformity of the magnetic field when the system is in the initial state |ψ (0)) = |00) and [ψ′ (0)) = m |01) + n |10), respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774088)the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)
文摘In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.
基金supported by the National Natural Science Foundation of China (Grant No.60667001)
文摘This paper studies the average fidelity of teleportation and thermal entanglement for a two-qubit Heisenberg XYZ chain in the presence of both an inhomogeneous magnetic field and a Dzyaloshinski-Moriya interaction. It shows that for a fixed Dz, the increase of bz will broaden the critical temperature at the cost of decreasing the thermal entanglement. And it can modulate the inhomogeneous magnetic field and the Dzyaloshinski-Moriya interaction for the average fidelity of teleportation to be optimal.
基金supported by the National Natural Science Foundation of China(Grant No.11274102)the New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the thermal entanglement in a spin-l/2 Ising-Heisenberg diamond chain, in which the vertical Heisen- berg spin dimers alternate with single Ising spins. Due to the fact that the Dzyaloshinskii-Moriya (DM) interaction con- tributes to unusual and interesting magnetic properties in actual materials, and moreover it plays a significant role in the degree of the entanglement of the Heisenberg quantum spin systems, we focus on the effects of different DM interactions, including Dz and Dx, on the thermal entanglement of the Heisenberg spin dimer. The concurrence, as a measure of spin dimer entanglement, is calculated for different values of exchange interactions, DM interaction, external magnetic field, and temperature. It is found that the critical temperature and the critical magnetic field corresponding to the vanishing of entanglement increase with DM interaction, and the entanglement revival region gets larger by increasing DM interac- tion, thus DM interaction favors the formation of the thermal entanglement. It is observed that different DM interaction parameters (Dz and Dx) have remarkably different influences on the entanglement. Different from the case Dz, there is the non-monotonic variation of the concurrence with temperature in the case Dx, and additionally the DM interaction Dx can induce the entanglement near zero temperature in the case that the antiferromagnetic Ising-type interaction constant is larger than the antiferromagnetic Heisenberg interaction constant. It is also shown that for the same value of DM interaction the critical magnetic field of the case Dx is larger than that of the case Dz.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘We investigate the properties of thermal quantum correlations in an infinite spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya(DM) interaction. The thermal quantum discord(TQD) and the thermal entanglement(TE)are discussed as two kinds of important methods to measure the quantum correlation, respectively. It is found that DM interaction plays an important role in the thermal quantum correlations of the system. It can enhance the thermal quantum correlations by increasing DM interaction. Furthermore, the thermal quantum correlations can be promoted by tuning the external magnetic field and the Heisenberg coupling parameter in the antiferromagnetic system. It is shown that the behaviors of TQD differ from those of TE. TQD is more robust against decoherence than TE. For the measurement of TQD, the "regrowth" phenomenon occurs in the ferromagnetic system. We also find that the anisotropy favors the thermal quantum correlations of the system with weak DM interaction.
基金The project supported by National Natural Science Foundation of China under Grant No.10547008the Foundation of Xi'an Institute of Posts and Telecommunications under Grant No. 105-0414Natural Science Fnundation of Shanxi Province under Grant No.2004A15
文摘We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwiseentanglement.Choosing the proper parameter J_i,we can obtain the maximal pairwise entanglement of the nearestqubits and make the non-nearest qubits entangle.
文摘This paper investigates thermal entanglements of a two-qubit Heisenberg XY chain in the presence of the Dzyaloshinskii-Moriya anisotropic antisymmetric interaction. By the concept of concurrence, it is found that the effects of spin-orbit coupling on the entanglement are different from those of spin-spin model. The analytical expressions of concurrence are obtained for this model.