期刊文献+
共找到18,982篇文章
< 1 2 250 >
每页显示 20 50 100
甘草甜素对喉癌Hep-2细胞侵袭和迁移的影响及机制研究
1
作者 要兆旭 马海滨 +4 位作者 刘琳 赵倩 巩慧 孙凯丽 秦隆朝 《陕西医学杂志》 CAS 2024年第5期604-609,共6页
目的:探究甘草甜素(Gly)对喉癌Hep-2细胞侵袭和迁移的影响及作用机制。方法:体外培养正常人喉黏膜上皮细胞和喉癌Hep-2细胞,实时荧光定量PCR(RT-qPCR)法和蛋白印迹实验检测微小RNA-205-5p(miR-205-5p)、沉默信息调节因子2相关酶3(SIRT3)... 目的:探究甘草甜素(Gly)对喉癌Hep-2细胞侵袭和迁移的影响及作用机制。方法:体外培养正常人喉黏膜上皮细胞和喉癌Hep-2细胞,实时荧光定量PCR(RT-qPCR)法和蛋白印迹实验检测微小RNA-205-5p(miR-205-5p)、沉默信息调节因子2相关酶3(SIRT3)mRNA和蛋白表达水平。将喉癌Hep-2细胞分为对照组、Gly低浓度组、Gly中浓度组、Gly高浓度组、Gly高浓度+空载质粒组、Gly高浓度+miR-205-5p抑制剂组。各组给予相应浓度的Gly干预或转染对应质粒培养48 h。Transwell实验和划痕实验分别检测各组Hep-2细胞侵袭和迁移能力。RT-qPCR法和蛋白印迹实验检测各组Hep-2细胞miR-205-5p、SIRT3 mRNA和蛋白表达水平。双荧光素酶报告基因实验分析miR-205-5p与SIRT3的靶向关系。结果:与人喉黏膜上皮细胞比较,喉癌Hep-2细胞miR-205-5p水平降低,SIRT3 mRNA和蛋白水平升高(均P<0.05)。与对照组比较,Gly低、中、高浓度组穿膜细胞数和划痕愈合率、SIRT3 mRNA和蛋白水平依次降低,miR-205-5p水平依次升高(均P<0.05)。与Gly高浓度组和Gly高浓度+空载质粒组比较,Gly高浓度+miR-205-5p抑制剂组穿膜细胞数和划痕愈合率、SIRT3 mRNA和蛋白水平升高,miR-205-5p水平降低(均P<0.05)。miR-205-5p可靶向调控SIRT3表达。结论:Gly能够抑制Hep-2细胞侵袭和迁移,其机制可能与上调miR-205-5p表达,进而靶向下调SIRT3表达有关。 展开更多
关键词 喉癌 hep-2细胞 甘草甜素 微小RNA-205-5p 沉默信息调节因子2相关酶3 侵袭 迁移
下载PDF
Evaluation of the intracellular lipid-lowering effect of polyphenols extract from highland barley in HepG2 cells 被引量:3
2
作者 Yijun Yao Zhifang Li +2 位作者 Bowen Qin Xingrong Ju Lifeng Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期454-461,共8页
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat... Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4. 展开更多
关键词 Highland barley Polyphenols extract Lipid-lowering effect HepG2 cells
下载PDF
Runx2 regulates peripheral nerve regeneration to promote Schwann cell migration and re-myelination 被引量:1
3
作者 Rong Hu Xinpeng Dun +1 位作者 Lolita Singh Matthew C.Banton 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1575-1583,共9页
Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifical... Runx2 is a major regulator of osteoblast differentiation and function;however,the role of Runx2 in peripheral nerve repair is unclea r.Here,we analyzed Runx2expression following injury and found that it was specifically up-regulated in Schwann cells.Furthermore,using Schwann cell-specific Runx2 knocko ut mice,we studied peripheral nerve development and regeneration and found that multiple steps in the regeneration process following sciatic nerve injury were Runx2-dependent.Changes observed in Runx2 knoc kout mice include increased prolife ration of Schwann cells,impaired Schwann cell migration and axonal regrowth,reduced re-myelination of axo ns,and a block in macrophage clearance in the late stage of regeneration.Taken together,our findings indicate that Runx2 is a key regulator of Schwann cell plasticity,and therefore peripheral nerve repair.Thus,our study shows that Runx2 plays a major role in Schwann cell migration,re-myelination,and peripheral nerve functional recovery following injury. 展开更多
关键词 macrophage clearance MIGRATION peripheral nerve injury regeneration re-myelination RUNX2 Schwann cells
下载PDF
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways 被引量:1
4
作者 Sen Zeng Honglan Yang +8 位作者 Binghao Wang Yongzhi Xie Ke Xu Lei Liu Wanqian Cao Xionghao Liu Beisha Tang Mujun Liu Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期205-211,共7页
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus... Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction. 展开更多
关键词 antisense oligonucleotides cell cycle arrest Charcot-Marie-Tooth disease 2Z induced pluripotent stem cells MAPK/ERK PI3K/Akt PROLIFERATION spinal muscular atrophy-like
下载PDF
黄连素下调NRAV和PI3K/AKT通路减轻RSV感染致HEp-2细胞的损伤
5
作者 崔玉娟 赵辉 +2 位作者 苏东霞 张莹 胡丹东 《中国药理学通报》 CAS CSCD 北大核心 2024年第4期747-755,共9页
目的探讨长链非编码RNA NRAV(LncRNA NRAV)和PI3K/AKT通路在黄连素(berberine,BE)减轻RSV感染致HEp-2细胞损伤中的机制。方法将HEp-2细胞感染RSV,并用BE、PI3K激活剂740Y-P处理或过表达NRAV。qRT-PCR检测NRAV、RSV-F、NS2表达水平;CCK-... 目的探讨长链非编码RNA NRAV(LncRNA NRAV)和PI3K/AKT通路在黄连素(berberine,BE)减轻RSV感染致HEp-2细胞损伤中的机制。方法将HEp-2细胞感染RSV,并用BE、PI3K激活剂740Y-P处理或过表达NRAV。qRT-PCR检测NRAV、RSV-F、NS2表达水平;CCK-8实验检测细胞存活率;流式细胞术检测细胞的凋亡率和线粒体膜电位;ATP检测试剂盒检测ATP水平;Western blot检测细胞PI3K、AKT、PINK1、Parkin、Beclin1、p62、LC3Ⅰ、LC3Ⅱ、BNIP3、NLRP3、ASC、caspase-1蛋白表达;MitoSOX染色检测细胞线粒体ROS(mtROS);ELISA检测细胞IL-1β、IL-6、IL-8、TNF-α分泌水平。结果过表达NARV细胞凋亡率、RSV活性增加,敲低后结果相反;BE能显著抑制NRAV和PI3K/AKT通路(P<0.05),改善线粒体功能、诱导线粒体自噬,提高细胞的活性、降低凋亡率(P<0.05),并降低NLRP3炎性小体活化水平和IL-1β、IL-6、IL-8、TNF-α水平(P<0.05)。过表达NRAV或740Y-P处理可逆转BE对RSV感染HEp-2细胞的改善作用。结论BE能够减轻RSV感染所致HEp-2细胞损伤,其机制可能与BE下调NRAV和PI3K/AKT通路,诱导线粒体自噬,进而减轻线粒体损伤和炎症反应有关。 展开更多
关键词 黄连素 RSV LncRNA NRAV PI3K/AKT通路 线粒体损伤 hep-2细胞损伤
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
6
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Reduction of the oxidative damage to H_(2)O_(2)-induced HepG2 cells via the Nrf2 signalling pathway by plant flavonoids Quercetin and Hyperoside
7
作者 Meijing Zhang Gaoshuai Zhang +10 位作者 Xiangxing Meng Xinxin Wang Jiao Xie Shaoshu Wang Biao Wang Jilite Wang Suwen Liu Qun Huang Xu Yang Jing Li Hao Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1864-1876,共13页
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat... Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside. 展开更多
关键词 HYPEROSIDE QUERCETIN HepG2 cell Oxidative damage Nrf2 signalling pathway
下载PDF
A comparative in vitro study on the effect of SGLT2 inhibitors on chemosensitivity to doxorubicin in MCF-7 breast cancer cells
8
作者 SHAHID KARIM ALANOUD NAHER ALGHANMI +5 位作者 MAHA JAMAL HUDA ALKREATHY ALAM JAMAL HIND A.ALKHATABI MOHAMMED BAZUHAIR AFTAB AHMAD 《Oncology Research》 SCIE 2024年第5期817-830,共14页
Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapaglif... Cancer frequently develops resistance to the majority of chemotherapy treatments.This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors,specifically Canagliflozin(CAN),Dapagliflozin(DAP),Empagliflozin(EMP),and Doxorubicin(DOX),using in vitro experimentation.The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin(DOX)in MCF-7 cells.Interestingly,it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth.Notably,when these medications were combined with DOX,there was a considerable inhibition of glucose consumption,as well as reductions in intracellular ATP and lactate levels.Moreover,this effect was found to be dependent on the dosages of the drugs.In addition to effectively inhibiting the cell cycle,the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression.This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications,namely CAN,DAP,and EMP,on the responsiveness to the anticancer properties of DOX.The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2. 展开更多
关键词 SGLT2 Cancer CYTOTOXICITY ATP cell cycle
下载PDF
Naringin ameliorates H_(2)O_(2)-induced oxidative damage in cells and prolongs the lifespan of female Drosophila melanogaster via the insulin signaling pathway
9
作者 Xiaomei Du Kexin Wang +7 位作者 Xiaoyan Sang Xiangxing Meng Jiao Xie Tianxin Wang Xiaozhi Liu Qun Huang Nan Zhang Hao Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1231-1245,共15页
Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the an... Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions. 展开更多
关键词 Drosophila melanogaster Insulin signaling(IIS)pathway NARINGIN PC12 cell HepG2 cell
下载PDF
NCAPD2 serves as a potential prognostic biomarker for lung adenocarcinoma and promotes cell proliferation,migration,invasion and cell cycle in vitro
10
作者 PEILING WU LIFANG ZHAO +5 位作者 HONGYAN ZHANG YUEYAN LOU DONGFANG CHEN SHAN XUE XUEQING LIU HANDONG JIANG 《Oncology Research》 SCIE 2024年第9期1439-1452,共14页
Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucid... Objectives:The pro-oncogenic effects of NCAPD2 have been extensively studied across various tumor types;however,its precise role within the context of lung adenocarcinoma(LUAD)remains elusive.This study aims to elucidate the biological functions of NCAPD2 in LUAD and unravel the underlying mechanistic pathways.Methods:Utilizing bioinformatics methodologies,we explored the differential expression of NCAPD2 between normal and tumor samples,along with its correlations with clinical-pathological characteristics,survival prognosis,and immune infiltration.Results:In the TCGA-LUAD dataset,tumor samples demonstrated significantly elevated levels of NCAPD2 expression compared to normal samples(p<0.001).Clinically,higher NCAPD2 expression was notably associated with advanced T,N,and M stages,pathologic stage,gender,smoking status,and diminished overall survival(OS).Moreover,differentially expressed genes(DEGs)associated with NCAPD2 were predominantly enriched in pathways related to cell division.Immune infiltration analysis revealed that NCAPD2 expression levels were linked to the infiltration of memory B cells,naïve CD4+T cells,activated memory CD4+T cells,and M1 macrophages.In vitro experiments demonstrated that silencing NCAPD2 suppressed LUAD cell proliferation,migration,invasion,epithelial-mesenchymal transition(EMT),and cell cycle progression.Conclusions:In summary,NCAPD2 may represent a promising prognostic biomarker and novel therapeutic target for LUAD. 展开更多
关键词 NCAPD2 LUAD Prognosis Immune infiltration cell cycle
下载PDF
Acetylacetone-TiO_(2) Promoted Large Area Compatible Cascade Electron Transport Bilayer for Efficient Perovskite Solar Cells
11
作者 Hyong Joon Lee Jin Kyoung Park +1 位作者 Jin Hyuck Heo Sang Hyuk Im 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期221-228,共8页
In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extract... In designing efficient perovskite solar cells(PSCs),the selection of suitable electron transport layers(ETLs)is critical to the final device performance as they determine the driving force for selective charge extraction.SnO_(2)nanoparticles(NPs)based ETLs have been a popular choice for PSCs due to superior electron mobility,but their relatively deep-lying conduction band energy levels(ECB)result in substantial potential loss.Meanwhile,TiO_(2)NPs establish favorable band alignment owing to shallower ECB,but their low intrinsic mobility and abundant surface trap sites impede the final performance.For this reason,constructing a cascaded bilayer ETL is highly desirable for efficient PSCs,as it can rearrange energy levels and exploit on advantages of an individual ETL.In this study,we prepare SnO_(2)NPs and acetylacetone-modified TiO_(2)(Acac-TiO_(2))NPs and implement them as bilayer SnO_(2)/Acac-TiO_(2)(BST)ETL,to assemble cascaded energy band structure.SnO_(2)contributes to rapid charge carrier transport from high electron mobility while Acac-TiO_(2)minimizes band-offset and effectively suppresses interfacial recombination.Accordingly,the optimized BST ETL generates synergistic influence and delivers power conversion efficiency(PCE)as high as 23.14%with open-circuit voltage(V_(oc))reaching 1.14 V.Furthermore,the BST ETL is transferred to a large scale and the corresponding mini module demonstrates peak performance of 18.39%PCE from 25 cm^(2)aperture area.Finally,the BST-based mini module exhibit excellent stability,maintaining 83.1%of its initial efficiency after 1000 h under simultaneous 1 Sun light-soaking and damp heat(85℃/RH 85%)environment. 展开更多
关键词 ACETYLACETONE large area PEROVSKITE solar cells TiO_(2)
下载PDF
Casein kinase-2 inhibition promotes retinal ganglion cell survival after acute intraocular pressure elevation
12
作者 Meng Wang Shi-Qi Yao +8 位作者 Yao Huang Jia-Jian Liang Yanxuan Xu Shaowan Chen Yuhang Wang Tsz Kin Ng Wai Kit Chu Qi Cui Ling-Ping Cen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1112-1118,共7页
Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2... Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury.To investigate the underlying mechanism,in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor(4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)by intravitreal injection.We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages.Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors.Furthermore,casein kinase-2 inhibition downregulated the expression of genes(Cck,Htrsa,Nef1,Htrlb,Prph,Chat,Slc18a3,Slc5a7,Scn1b,Crybb2,Tsga10ip,and Vstm21)involved in intraocular pressure elevation.Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation. 展开更多
关键词 casein kinase-2 GLAUCOMA intraocular pressure elevation MACROPHAGES retinal ganglion cells
下载PDF
Crystallization management of CsPbI_(2)Br perovskites by PbAc_(2)-incorporated twice spin-coating process for efficient and stable CsPbI_(2)Br perovskite solar cells
13
作者 Yu Liu Kun Lang +6 位作者 Huifang Han Huijing Liu Yao Fu Pengchen Zou Yinhui Lyu Jia Xu Jianxi Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期419-428,I0008,共11页
CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization... CsPbI_(2)Br perovskite solar cell has been extensively studied due to its exceptional thermal stability and relatively stable perovskite phase structure.However,the presence of bromine leads to a rapid crystallization rate of CsPbI_(2)Br films,resulting in small grain size and high defect density.Additionally,CsPbI_(2)Br demonstrates poor light absorption due to its wide bandgap.Therefore,it is crucial to control the crystallization rate and increase the film thickness to reduce defect density,enhance light absorption,and improve photovoltaic performance.In this study,we utilized a PbAc_(2)-incorporated twice spincoating(PTS) process to address these issues.Initially,PbAc_(2) was added to the CsPbI_(2)Br precursor solution to form a CsPbI_(2)Br film,which was then coated with the CsPbI_(2)Br precursor solution to produce the PTS film,Ac^(-)can delay the perovskite crystallization,leading to the formation of thicker and denser CsPbI_(2)Br films.Moreover,lone-pair electrons of the oxygen atom provided by Ac^(-)formed coordination bonds with under-coordinated Pb~(2+) ions to fill halogen ion vacancies,thereby reducing the defect density.Ultimately,the PTS CsPbI_(2)Br device achieved a peak power conversion efficiency(PCE) of 16.19% and maintained 96.7% of its initial PCE over 1500 h at room temperature under 25% relative humidity without any encapsulation. 展开更多
关键词 CsPbI_(2)Br Twice spin-coating process PbAc_(2) Crystallization management Perovskite solar cells
下载PDF
Defect Engineering in Earth-Abundant Cu_(2)ZnSnSe_(4) Absorber Using Efficient Alkali Doping for Flexible and Tandem Solar Cell Applications
14
作者 Muhammad Rehan Ara Cho +11 位作者 Inyoung Jeong Kihwan Kim Asmat Ullah Jun-Sik Cho Joo Hyung Park Yunae Jo Sung Jun Hong Seung Kyu Ahn SeJin Ahn Jae Ho Yun Jihye Gwak Donghyeop Shin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期249-256,共8页
To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃... To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications. 展开更多
关键词 alkali doping Earth-abundant Cu_(2)ZnSnSe_(4) flexible solar cells four-terminal tandem cells low-temperature process
下载PDF
SARS-CoV2 Nsp3 protein triggers cell death and exacerbates amyloid β42-mediated neurodegeneration
15
作者 Aditi Singh Anuradha Venkatakrishnan Chimata +4 位作者 Prajakta Deshpande Soumya Bajpai Anjali Sangeeth Mrigendra Rajput Amit Singh 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1385-1392,共8页
Infection caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV2)virus,responsible for the coronavirus disease 2019(COVID-19)pandemic,induces symptoms including increased inflammatory response,severe ... Infection caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV2)virus,responsible for the coronavirus disease 2019(COVID-19)pandemic,induces symptoms including increased inflammatory response,severe acute respiratory syndrome(SARS),cognitive dysfunction like brain fog,and cardiovascular defects.Long-term effects of SARS-CoV2 COVID-19 syndrome referred to as post-COVID-19 syndrome on age-related progressive neurodegenerative disorders such as Alzheimer's disease remain understudied.Using the targeted misexpression of individual SARS-CoV2 proteins in the retinal neurons of the Drosophila melanogaster eye,we found that misexpression of nonstructural protein 3(Nsp3),a papain-like protease,ablates the eye and generates dark necrotic spots.Targeted misexpression of Nsp3 in the eye triggers reactive oxygen species production and leads to apoptosis as shown by cell death reporters,terminal deoxynucleotidyl transferase(TdT)dUTP Nick-end labeling(TUNEL)assay,and dihydroethidium staining.Furthermore,Nsp3 misexpression activates both apoptosis and autophagy mechanism(s)to regulate tissue homeostasis.Transient expression of SARS-CoV2 Nsp3 in murine neuroblastoma,Neuro-2a cells,significantly reduced the metabolic activity of these cells and triggers cell death.Misexpression of SARS-CoV2 Nsp3 in an Alzheimer's disease transgenic fly eye model(glass multiple repeats[GMR]>amyloidβ42)further enhances the neurodegenerative rough eye phenotype due to increased cell death.These findings suggest that SARS-CoV2 utilizes Nsp3 protein to potentiate cell death response in a neurodegenerative disease background that has high pre-existing levels of neuroinflammation and cell death. 展开更多
关键词 Alzheimer's disease apoptosis autophagy COVID-19 DROSOPHILA NECROSIS Neuro-2a cells NEURODEGENERATION post COVID-19 syndrome SARS-CoV2
下载PDF
Procyanidin A_1 and its digestive products alleviate acrylamide-induced IPEC-J2 cell damage through regulating Keap1/Nrf2 pathway
16
作者 Fangfang Yan Qun Lu +1 位作者 Chengming Wang Rui Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1475-1484,共10页
Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In thi... Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR. 展开更多
关键词 Procyanidin A_1 Digestive products Acrylamide Nuclear factor erythroid 2-related factor 2(Nrf2) Intestinal cell damage
下载PDF
Hesperidin ameliorates H_(2)O_(2)-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway
17
作者 Qi Huang Jiashuo Liu +2 位作者 Can Peng Xuefeng Han Zhiliang Tan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1737-1750,共14页
Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucid... Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucidated.Results In this study, we investigated the effects of hesperidin on H_(2)O_(2)-induced oxidative stress in b MECs and the underlying molecular mechanism. We found that hesperidin attenuated H_(2)O_(2)-induced cell damage by reducing reactive oxygen species(ROS) and malondialdehyde(MDA) levels, increasing catalase(CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent.Conclusions Our results suggest that hesperidin could protect b MECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary. 展开更多
关键词 Bovine mammary epithelial cell HESPERIDIN Nrf2 signaling pathway Oxidative stress
下载PDF
Precursor engineering enables high-performance all-inorganic CsPbIBr_(2) perovskite solar cells with a record efficiency approaching 13%
18
作者 Qingyan Chang Yidan An +8 位作者 Huaiman Cao Yuzhen Pan Liangyu Zhao Yulong Chen Yi We Sai-Wing Tsang Hin-Lap Yip Licheng Sun Ze Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期16-22,I0003,共8页
All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocess... All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells. 展开更多
关键词 All-inorganic perovskite solar cells CsPbIBr_(2) Precursor engineering Solubility High performance
下载PDF
USP19 Stabilizes TAK1 to Regulate High Glucose/Free Fatty Acid-induced Dysfunction in HK-2 Cells
19
作者 Xiao-hui YAN Yin-na ZHU Yan-ting ZHU 《Current Medical Science》 SCIE CAS 2024年第4期707-717,共11页
Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of hi... Objective Obesity-induced kidney injury contributes to the development of diabetic nephropathy(DN).Here,we identified the functions of ubiquitin-specific peptidase 19(USP19)in HK-2 cells exposed to a combination of high glucose(HG)and free fatty acid(FFA)and determined its association with TGF-beta-activated kinase 1(TAK1).Methods HK-2 cells were exposed to a combination of HG and FFA.USP19 mRNA expression was detected by quantitative RT-PCR(qRT-PCR),and protein analysis was performed by immunoblotting(IB).Cell growth was assessed by Cell Counting Kit-8(CCK-8)viability and 5-ethynyl-2′-deoxyuridine(EdU)proliferation assays.Cell cycle distribution and apoptosis were detected by flow cytometry.The USP19/TAK1 interaction and ubiquitinated TAK1 levels were assayed by coimmunoprecipitation(Co-IP)assays and IB.Results In HG+FFA-challenged HK-2 cells,USP19 was highly expressed.USP19 knockdown attenuated HG+FFA-triggered growth inhibition and apoptosis promotion in HK-2 cells.Moreover,USP19 knockdown alleviated HG+FFA-mediated PTEN-induced putative kinase 1(PINK1)/Parkin pathway inactivation and increased mitochondrial reactive oxygen species(ROS)generation in HK-2 cells.Mechanistically,USP19 stabilized the TAK1 protein through deubiquitination.Importantly,increased TAK1 expression reversed the USP19 knockdown-mediated phenotypic changes and PINK1/Parkin pathway activation in HG+FFA-challenged HK-2 cells.Conclusion The findings revealed that USP19 plays a crucial role in promoting HK-2 cell dysfunction induced by combined stimulation with HG and FFAs by stabilizing TAK1,providing a potential therapeutic strategy for combating DN. 展开更多
关键词 HK-2 cells high glucose free fatty acid DYSFUNCTION USP19 DEUBIQUITINATION
下载PDF
Meiotic nuclear divisions 1 suppresses the proliferation and invasion of pancreatic cancer cells via regulating H2A.X variant histone
20
作者 DONGQIN WANG YAN SHI +8 位作者 ZHIQIANG WANG JING ZHANG LUYAO WANG HONGYU MA SHUHUA SHI XIAOFU LIAN HUA HUANG XIAOJING WANG CHAOQUN LIAN 《BIOCELL》 SCIE 2024年第1期111-122,共12页
Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods... Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods:The study focused on meiotic nuclear divisions 1(MND1),integrating data from the Gene Expression Profiling Interactive Analysis(GEPIA)database with prognostic survival analysis.Simultaneously,experiments at cellular level were employed to demonstrate the effect of MND1 on the proliferation and migration of PC.The small-molecule inhibitor of MND1 was used to suppress the migration of PC cells by knocking down MND1 using small interfering RNA(siRNA)in Patu-8988 and Panc1 cell lines.Results:The results of Cell Counting Kit-8 indicated that the suppression of MND1 resulted in a decrease in cell proliferation.Wound healing and Transwell assays revealed that MND1 knockdown reduced cell migration and invasion.Flow cytometry revealed that inhibiting MND1 hindered the cell cycle.Furthermore,MND1 could stimulate the proliferation,migration,and invasion of Patu-8988 and Panc1 cells by increasing the expression of MND1.Notably,MND1 had a positive effect on H2AFX expression in PC cells.Elevated MND1 expression suggests the low overall survival rate of individuals diagnosed with PC.Conclusion:These findings suggest that MND1 has the potential to be a gene with the ability to accurately diagnose and treat PC. 展开更多
关键词 Pancreatic carcinoma MND1 H2AFX cell cycle
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部