There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoi...There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.展开更多
The significance of detection of urban active faults and the general situation concerning detection of urban active faults in the world are briefly introduced. In a brief description of the basic principles of anti-di...The significance of detection of urban active faults and the general situation concerning detection of urban active faults in the world are briefly introduced. In a brief description of the basic principles of anti-disturbance and high-resolution shallow seismic exploration, the stress is put on the excitation of seismic sources, the performance of digital seismographs, receiving mode and conditions, geometry as well as data acquisition, processing and interpretation in the anti-disturbance and high-resolution shallow seismic exploration of urban active faults. The study indicates that a controlled seismic source with a linear or nonlinear frequency-conversion scanning function and the relevant seismographs must be used in data acquisition, as well as working methods for small group interval, small offset, multi-channel receiving, short-array and high-frequency detectors for receiving are used. Attention should be paid to the application of techniques for static correction of refraction, noise suppressing, high-precision analysis of velocity, wavelet compressing, zero-phasing of wavelet and pre-stacking migration to data processing and interpretation. Finally, some cases of anti-disturbance and high-resolution shallow seismic exploration of urban active faults are present in the paper.展开更多
基金supported by the PetroChina Prospective,Basic,and Strategic Technology Research Project(No.2021DJ0606).
文摘There is little low-and-high frequency information on seismic data in seismic exploration,resulting in narrower bandwidth and lower seismic resolution.It considerably restricts the prediction accuracy of thin reservoirs and thin interbeds.This study proposes a novel method to constrain improving seismic resolution in the time and frequency domain.The expected wavelet spectrum is used in the frequency domain to broaden the seismic spectrum range and increase the octave.In the time domain,the Frobenius vector regularization of the Hessian matrix is used to constrain the horizontal continuity of the seismic data.It eff ectively protects the signal-to-noise ratio of seismic data while the longitudinal seismic resolution is improved.This method is applied to actual post-stack seismic data and pre-stack gathers dividedly.Without abolishing the phase characteristics of the original seismic data,the time resolution is signifi cantly improved,and the structural features are clearer.Compared with the traditional spectral simulation and deconvolution methods,the frequency distribution is more reasonable,and seismic data has higher resolution.
文摘The significance of detection of urban active faults and the general situation concerning detection of urban active faults in the world are briefly introduced. In a brief description of the basic principles of anti-disturbance and high-resolution shallow seismic exploration, the stress is put on the excitation of seismic sources, the performance of digital seismographs, receiving mode and conditions, geometry as well as data acquisition, processing and interpretation in the anti-disturbance and high-resolution shallow seismic exploration of urban active faults. The study indicates that a controlled seismic source with a linear or nonlinear frequency-conversion scanning function and the relevant seismographs must be used in data acquisition, as well as working methods for small group interval, small offset, multi-channel receiving, short-array and high-frequency detectors for receiving are used. Attention should be paid to the application of techniques for static correction of refraction, noise suppressing, high-precision analysis of velocity, wavelet compressing, zero-phasing of wavelet and pre-stacking migration to data processing and interpretation. Finally, some cases of anti-disturbance and high-resolution shallow seismic exploration of urban active faults are present in the paper.