Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically ...Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically investigate the magnetism,structural phase transition,and electronic properties of MTO under high pressure through first-principles calculations.Both R3 and P2_(1)/n phases of MTO are antiferromagnetic at zero temperature.The R3 phase transforms to the P2_(1)/n phase at 7.5 8 GPa,accompanied by a considerable volume collapse of about 6.47%.Employing the accurate method that combines DFT+U/and GW,the calculated band gap of R3 phase at zero pressure is very close to the experimental values,while that of the P2_(1)/n phase is significantly overestimated.The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P2_(1)/n phase instead of the Kubelka-Munk plot for the direct band gap.Furthermore,our study reveals that the transition from the R3 phase to the P2_(1)/n phase is accompanied by a slight reduction in the band gap.展开更多
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s...Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.展开更多
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ...High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.展开更多
Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure ...Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys.展开更多
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour...In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.展开更多
A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy ...A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries.展开更多
High pressure and high temperature(HPHT)technology,as an extreme physical condition,plays an important role in regulating the properties of materials,having the advantages of enhancing doping efficiency,refining grain...High pressure and high temperature(HPHT)technology,as an extreme physical condition,plays an important role in regulating the properties of materials,having the advantages of enhancing doping efficiency,refining grain size,and manufacturing defects,therefore it is quite necessary to study the effectiveness on tuning thermoelectric properties.Elemental telluride,a potential candidate for thermoelectric materials,has the poor doping efficiency and high resistivity,which become an obstacle for practical applications.Here,we report the realization of a dual optimization of electrical behaviors and thermal conductivity through HPHT method combining with the introduction of black phosphorus.The results show the maximum zT of 0.65 and an average zT of 0.42(300 K–610 K),which are increased by 55%and 68%in the synthesis pressure regulation system,respectively.This study clarifies that the HPHT method has significant advantages in modulating the thermoelectric parameters,providing a reference for seeking high performance thermoelectric materials.展开更多
An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature...An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.展开更多
Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials...Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials are also likely to be utilized in such an environment.However,the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present.Therefore,in this study,we investigate the properties of the matrix material of Li-excess Mn-based material,Li_(2)MnO_(3),under high pressure.The equation of state,bulk modulus,and steady-state volume of Li_(2)MnO_(3) are predicted by the method of first principles calculation.The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure.During compression,Li-O bond is more easily compressed than Mn-O bond.The results from the climbing image nudged elastic band(CINEB)method show that the energy barrier of Li^(+)migration in the lithium layer increases with pressure increasing.Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.展开更多
The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching t...The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching temperature,leaching time and liquid/solid(L/S) ratio on metals extraction were examined.More than 97% Ni,96% Co,93% Mn,95% Mg and less than 1% Fe are extracted under optimum conditions.Analysis of the high pressure acid leaching residue by chemical and XRD analysis indicates that the residual iron and sulfur are mainly present in phases of hematite and alunite,respectively.The high pressure leaching process provides a simple and efficient way for the high recovery of nickel and cobalt from laterite ore,leaving residue as a suitable iron resource.展开更多
The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor...The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.展开更多
A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube ...A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.展开更多
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR...Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.展开更多
The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conv...The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conventional preparation methods. During the processes of chemical fixation, dehydration and embedding, the cell structures might be more artificially modified than that obtained from high pressure freezing and freeze substitution. With the present method, the sheath of N. flagelliforme could be well penetrated and no extra big space could exist between the cell and the sheath. The cell protoplasm rarely shrinked. Some fine structures of cell inclusions and unit membranes became visualized. Many bacteria were harbored in the sheath. In addition, the presence of big vacuoles in the cell of N. flagelliforme as well as the presence of bacteria in the sheath shown in the present preparation for cyanobacteria has not been described so far in the literature.展开更多
Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The...Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.展开更多
The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into ...The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.展开更多
The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffracti...The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), and the hardness of the Cu-Zn alloy was also measured. The results show that the ct phase with a smaller grain size, different shapes, and random distribution appears in the Cu-Zn alloy during the solid-state phase transformation generation in the temperature range of 25-750℃ and the pressure range of 0-6 GPa. The amount of residual α phase in the microstructure decreases and then increases with increasing pressure. Under a high pressure of 3 GPa, the least volume fraction of residual a phase was obtained, and under a high pressure of 6 GPa, the changes of the microstructure of the Cu-Zn alloy were not obvious. In addition, high pressure can increase the hardness of the Cu-Zn alloy, but it cannot generate any new phase.展开更多
Ti-6 Al-4 V alloy powder was processed by electrode induction melting gas atomization(EIGA)at high gas pressure(5.5-7.0 MPa).The effects of atomizing gas pressure on the powder characteristics and the microstructure,a...Ti-6 Al-4 V alloy powder was processed by electrode induction melting gas atomization(EIGA)at high gas pressure(5.5-7.0 MPa).The effects of atomizing gas pressure on the powder characteristics and the microstructure,along with the mechanical properties of the as-fabricated block by laser melting deposition(LMD),were investigated.The results indicate that the diameters of powders are distributed in a wide range of sizes from 1 to 400μm,and the median powder size(d50)decreases with increasing gas pressure.The powders with a size fraction of 100-150μm obtained at gas pressures of 6.0 and 6.5 MPa have better flowability.The oxygen content is consistent with the change trend of gas pressure within a low range of 0.06%-0.20%.Specimens fabricated by LMD are mainly composed ofα+βgrains with a fine lamellar Widmanstatten structures and have the ultimate tensile strength(UTS)and yield strength of approximately 1100 and 1000 MPa,respectively.Furthermore,the atomized powders have a favorable 3 D printing capability,and the mechanical properties of Ti-6 Al-4 V alloys manufactured by LMD typically exceed those of their cast or wrought counterparts.展开更多
The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultra...The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy.展开更多
The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pel...The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.展开更多
基金Project supported by National Key Research and Development Program of China(Grant No.2021YFB3802300)the Natural Science Foundation of China Academy of Engineering Physics(Grant Nos.U1730248 and U1830101)the National Natural Science Foundation of China(Grant Nos.12202418,11872056,11904282,12074274,and 12174356)。
文摘Mn_(3)TeO_(6)(MTO) has been experimentally found to adopt a P2_(1)/In structure under high pressure,which exhibits a significantly smaller band gap compared to the atmospheric R3 phase.In this study,we systematically investigate the magnetism,structural phase transition,and electronic properties of MTO under high pressure through first-principles calculations.Both R3 and P2_(1)/n phases of MTO are antiferromagnetic at zero temperature.The R3 phase transforms to the P2_(1)/n phase at 7.5 8 GPa,accompanied by a considerable volume collapse of about 6.47%.Employing the accurate method that combines DFT+U/and GW,the calculated band gap of R3 phase at zero pressure is very close to the experimental values,while that of the P2_(1)/n phase is significantly overestimated.The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the P2_(1)/n phase instead of the Kubelka-Munk plot for the direct band gap.Furthermore,our study reveals that the transition from the R3 phase to the P2_(1)/n phase is accompanied by a slight reduction in the band gap.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074273)the Sichuan Science and Technology Program (Grant No.2022NSFSC1810)。
文摘Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices.
基金The project supported by the National Key Research and Development Program of China(Grant No.2018YFA0305703)Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.U1930401 and 11874075)。
文摘High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.
基金supported by the National Natural Science Foundation of China(Nos.51875211 and 51375171)Beijing Natural Science Foundation(No.L223001)+1 种基金Natural Science Foundation of Guangdong Province(No.2023A1515012730)the Program for New Century Excellent Talents in University in China(No.NCET-08-0209).
文摘Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys.
基金Financial support comes from China National Natural Science Foundation(Grant No.51974352)as well as from China University of Petroleum(East China)(Grant Nos.2018000025 and 2019000011)。
文摘In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.
基金supported by National Natural Science Foundation of China (No.U21A2047 and 51971076)China Postdoctoral Science Foundation (Grant No.2019M653599)Guangdong Basic and Applied Basic Research Foundation (No.2019A1515110289)。
文摘A Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr(wt.%) alloy is processed by solution treatment and high pressure torsion(HPT) at room temperature to produce a nanostructured light material with high hardness. The stability of this alloy is subsequently tested through isochronal annealing for 0.5 h at 373 K to 673 K. The results reveal a thermal stability that is vastly superior to that of conventional Mg-based alloys processed by severe plastic deformation: the grain size remains at around 50 nm on heating to 573 K, and as the temperature is increased to 673 K,grain growth is restricted to within 500 nm. The stability of grain refinement of the present alloy/processing combination allowing grain size to be limited to 55 nm after exposure at 573 K, appears to be nearly one order of magnitude better than for the other SPD processed Mg-RE type alloys, and 2 orders of magnitude better than those of SPD processed RE-free Mg alloys. This superior thermal stability is attributed to formation of co-clusters near and segregation at grain boundaries, which cause a thermodynamic stabilization of grain size, as well as formation of β-Mg_(5)RE equilibrium phase at grain boundaries, which impede grain growth by the Zener pinning effect. The hardness of the nanostructured Mg-Gd-Y-Zn-Zr alloy increases with increasing annealing temperature up to 573 K, which is quite different from the other SPD-processed Mg-based alloys. The high hardness of 136 HV after annealing at 573 K is mainly due to solute segregation and solute clustering at or near grain boundaries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804185,11974208,52172212,52102335,and 52002217)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2020YQ05,ZR2019MA054,2019KJJ020,ZR2021YQ03,and 2022KJA043)。
文摘High pressure and high temperature(HPHT)technology,as an extreme physical condition,plays an important role in regulating the properties of materials,having the advantages of enhancing doping efficiency,refining grain size,and manufacturing defects,therefore it is quite necessary to study the effectiveness on tuning thermoelectric properties.Elemental telluride,a potential candidate for thermoelectric materials,has the poor doping efficiency and high resistivity,which become an obstacle for practical applications.Here,we report the realization of a dual optimization of electrical behaviors and thermal conductivity through HPHT method combining with the introduction of black phosphorus.The results show the maximum zT of 0.65 and an average zT of 0.42(300 K–610 K),which are increased by 55%and 68%in the synthesis pressure regulation system,respectively.This study clarifies that the HPHT method has significant advantages in modulating the thermoelectric parameters,providing a reference for seeking high performance thermoelectric materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12274168 and 12074141)。
文摘An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.
基金Project supported by the Research on High Power Flexible Battery in All Sea Depth,China (Grant No.2020-XXXXXX-246-00)。
文摘Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials are also likely to be utilized in such an environment.However,the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present.Therefore,in this study,we investigate the properties of the matrix material of Li-excess Mn-based material,Li_(2)MnO_(3),under high pressure.The equation of state,bulk modulus,and steady-state volume of Li_(2)MnO_(3) are predicted by the method of first principles calculation.The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure.During compression,Li-O bond is more easily compressed than Mn-O bond.The results from the climbing image nudged elastic band(CINEB)method show that the energy barrier of Li^(+)migration in the lithium layer increases with pressure increasing.Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.
文摘The leaching behavior of metals from a nickeliferous limonitic laterite ore was investigated by high pressure acid leaching process for the extraction of nickel and cobalt.The effects of sulfuric acid added,leaching temperature,leaching time and liquid/solid(L/S) ratio on metals extraction were examined.More than 97% Ni,96% Co,93% Mn,95% Mg and less than 1% Fe are extracted under optimum conditions.Analysis of the high pressure acid leaching residue by chemical and XRD analysis indicates that the residual iron and sulfur are mainly present in phases of hematite and alunite,respectively.The high pressure leaching process provides a simple and efficient way for the high recovery of nickel and cobalt from laterite ore,leaving residue as a suitable iron resource.
基金Project(11541012) supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department,China
文摘The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.
基金Project(51775481)supported by the National Natural Science Foundation of ChinaProject(A2016002017)supported by the High-level Talents Program of Heibei Province,China
文摘A new technological process of tube forming was developed, namely solution treatment → granule medium internal high pressure forming → artificial aging. During this process, the mechanical properties of AA6061 tube can be adjusted by heat treatment to satisfy the process requirements and the processing method can also be realized by granule medium internal high pressure forming technology with the features of convenient implementation, low requirement to equipment and flexible design in product. Results show that, at a solution temperature of 560 ℃ and time of 120 min, the elongation of AA6061 increases by 313%, but the strength and the hardness dramatically decrease. At an aging temperature of 180 ℃ and time of 360 min, the strength and hardness of AA6061 alloy are recovered to the values of the as-received alloy. The maximum expansion ratio(MER) of AA6061 tube increases by 25.5% and the material properties of formed tube reach the performances of raw material.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of China,ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.
文摘The ultrastructure of the vegetative cells of Nostoc flagelliforme Born. et Flah. was investigated with high pressure freezing and freeze substitution technique and compared with the results obtained by using conventional preparation methods. During the processes of chemical fixation, dehydration and embedding, the cell structures might be more artificially modified than that obtained from high pressure freezing and freeze substitution. With the present method, the sheath of N. flagelliforme could be well penetrated and no extra big space could exist between the cell and the sheath. The cell protoplasm rarely shrinked. Some fine structures of cell inclusions and unit membranes became visualized. Many bacteria were harbored in the sheath. In addition, the presence of big vacuoles in the cell of N. flagelliforme as well as the presence of bacteria in the sheath shown in the present preparation for cyanobacteria has not been described so far in the literature.
基金The National Basic Research Program of China(973 Program) (No2004CB217702-01)the Foundation of ExcellentPhDThesis of Southeast University
文摘Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(12)1001-04]~~
文摘The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.
文摘The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), and the hardness of the Cu-Zn alloy was also measured. The results show that the ct phase with a smaller grain size, different shapes, and random distribution appears in the Cu-Zn alloy during the solid-state phase transformation generation in the temperature range of 25-750℃ and the pressure range of 0-6 GPa. The amount of residual α phase in the microstructure decreases and then increases with increasing pressure. Under a high pressure of 3 GPa, the least volume fraction of residual a phase was obtained, and under a high pressure of 6 GPa, the changes of the microstructure of the Cu-Zn alloy were not obvious. In addition, high pressure can increase the hardness of the Cu-Zn alloy, but it cannot generate any new phase.
基金Project(2017YFB0305801)supported by the National Key R&D Program of ChinaProject(U1508213)supported by the Joint-Fund of NSFC-Liaoning,ChinaProject(51771051)supported by the National Natural Science Foundation of China.
文摘Ti-6 Al-4 V alloy powder was processed by electrode induction melting gas atomization(EIGA)at high gas pressure(5.5-7.0 MPa).The effects of atomizing gas pressure on the powder characteristics and the microstructure,along with the mechanical properties of the as-fabricated block by laser melting deposition(LMD),were investigated.The results indicate that the diameters of powders are distributed in a wide range of sizes from 1 to 400μm,and the median powder size(d50)decreases with increasing gas pressure.The powders with a size fraction of 100-150μm obtained at gas pressures of 6.0 and 6.5 MPa have better flowability.The oxygen content is consistent with the change trend of gas pressure within a low range of 0.06%-0.20%.Specimens fabricated by LMD are mainly composed ofα+βgrains with a fine lamellar Widmanstatten structures and have the ultimate tensile strength(UTS)and yield strength of approximately 1100 and 1000 MPa,respectively.Furthermore,the atomized powders have a favorable 3 D printing capability,and the mechanical properties of Ti-6 Al-4 V alloys manufactured by LMD typically exceed those of their cast or wrought counterparts.
基金Project(51605342) supported by the National Natural Science Foundation of ChinaProject(2015CFB431) supported by the Natural Science Foundation of Hubei Province,China+1 种基金Project(K201520) supported by the Science Research Foundation of Wuhan Institute of Technology,ChinaProject(2016KA01) supported by the Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety,China
文摘The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy.
基金Project(50725416) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘The mechanism of high pressure roll grinding on improvement of compression strength of oxidized hematite pellets was researched by considering their roasting properties. The results indicate that oxidized hematite pellets require higher preheating temperature and longer preheating time to attain required compression strength of pellets compared with the common magnetite oxidized pellets. It is found that when the hematite concentrates are pretreated by high pressure roll grinding (HPRG), the compression strengths of preheated and roasted oxidized hematite pellets get improved even with lower preheating and roasting temperatures and shorter preheating and roasting time. The mechanism for HPRG to improve roasting properties of oxidized pellets were investigated and the cause mainly lies in the increase of micro-sized particles and the decrease of dispersion degree for hematite concentrates, which promotes the hematite concentrate particles to be compacted, the solid-phase crystallization, and finally the formation of Fe203 bonding bridges during subsequent high temperature roasting process.