Bioko Island(3008 m a.s.l) is located in the presently more active volcanic zone of the Cameroon Line and composed essentially of alkaline basalts and hawaiites, and lesser mugearites. The rocks show microlitic porp...Bioko Island(3008 m a.s.l) is located in the presently more active volcanic zone of the Cameroon Line and composed essentially of alkaline basalts and hawaiites, and lesser mugearites. The rocks show microlitic porphyritic texture with phenocrysts of olivine(83% 〈 Fo 〈 87%) and clinopyroxene in a matrix of plagioclase, clinopyroxene and oxides. Hawaiites and mugearites also include phenocrysts of plagioclase(An62-67Ab35-32Or3-1). Major element variation diagrams show an increase in Si O2, Al2O3, Na2 O and K2 O with increasing Mg O for the studied rock groups. The rocks are characterized by low(^86Sr/^87Sr)i ratios(0.70320e0.70406), high 3Nd(t) values(2.56e4.33) and high(^206Pb/^204Pb)i ratios(20.032e20.035) values.Basalts are enriched in LILE and LREE, and have(Hf/Sm)N= 0.57e1.16. These geochemical signatures are similar to those of the Mount Cameroon rocks, and might be attributed to low degrees of partial melting from a garnet-amphibole-bearing mantle source. The trace elements and isotopic compositions suggest that the parental magma source might have involved HIMU- and EM1-components.展开更多
基金financially supported by the Ministère des Affaires Economiques (Project SGB/ NAT 91-98)
文摘Bioko Island(3008 m a.s.l) is located in the presently more active volcanic zone of the Cameroon Line and composed essentially of alkaline basalts and hawaiites, and lesser mugearites. The rocks show microlitic porphyritic texture with phenocrysts of olivine(83% 〈 Fo 〈 87%) and clinopyroxene in a matrix of plagioclase, clinopyroxene and oxides. Hawaiites and mugearites also include phenocrysts of plagioclase(An62-67Ab35-32Or3-1). Major element variation diagrams show an increase in Si O2, Al2O3, Na2 O and K2 O with increasing Mg O for the studied rock groups. The rocks are characterized by low(^86Sr/^87Sr)i ratios(0.70320e0.70406), high 3Nd(t) values(2.56e4.33) and high(^206Pb/^204Pb)i ratios(20.032e20.035) values.Basalts are enriched in LILE and LREE, and have(Hf/Sm)N= 0.57e1.16. These geochemical signatures are similar to those of the Mount Cameroon rocks, and might be attributed to low degrees of partial melting from a garnet-amphibole-bearing mantle source. The trace elements and isotopic compositions suggest that the parental magma source might have involved HIMU- and EM1-components.