Designing adjuvants that can induce strong cytotoxic T cell responses is largely required for preparing DNA vaccines. In this study we explored dual costimulatory molecules 4-1BBL and OX40L as adjuvants to improve the...Designing adjuvants that can induce strong cytotoxic T cell responses is largely required for preparing DNA vaccines. In this study we explored dual costimulatory molecules 4-1BBL and OX40L as adjuvants to improve the efficiency of the HIV multiple-epitope DNA vaccine. When explored in the human dendritic cell-T cell based coculture system, dual costimulatory molecules significantly enhanced the anti-HIV T cell response of the HIV multiple-epitope DNA vaccine, as detected by intracellular cytokine staining to HIV antigens, cytokines accumulation in the cultures, and antigen-specific cytotoxic T lymphocyte responses. These results suggest that dual costimulatory molecules 4-1BBL and OX40L can effectively increase the potential of the HIV multiple-epitope antigen DNA vaccine and may provide an exciting approach for HIV therapy.展开更多
基金Supported by the National High-tech Research and Development Program(No.2006AA02Z447)
文摘Designing adjuvants that can induce strong cytotoxic T cell responses is largely required for preparing DNA vaccines. In this study we explored dual costimulatory molecules 4-1BBL and OX40L as adjuvants to improve the efficiency of the HIV multiple-epitope DNA vaccine. When explored in the human dendritic cell-T cell based coculture system, dual costimulatory molecules significantly enhanced the anti-HIV T cell response of the HIV multiple-epitope DNA vaccine, as detected by intracellular cytokine staining to HIV antigens, cytokines accumulation in the cultures, and antigen-specific cytotoxic T lymphocyte responses. These results suggest that dual costimulatory molecules 4-1BBL and OX40L can effectively increase the potential of the HIV multiple-epitope antigen DNA vaccine and may provide an exciting approach for HIV therapy.