AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transf...AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy,flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay.Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice,and the pathological analysis of tumor formation was performed.Two cytoskeletal proteins were detected by Western blotting. RESULTS:Compared with HepG2 cells,HepG2.2.15 cells showed organelle degeneration and filopodia disappearance under electron microscope.HepG2.2.15 cells proliferated and migrated slowly in vitro,and hardly formed tumor and lung metastasis in nude mice.Flow cytometry showed that the majority of HepG2.2.15 cells were arrested in G1 phase,and apoptosis was minor in both cell lines.Furthermore,the levels of cytoskeletal proteins F-actin and Ezrin were decreased in HepG2.2.15 cells. CONCLUSION:HepG2.2.15 cells demonstrated a lower proliferation and invasion ability than the HepG2 cells due to HBV transfection.展开更多
Fortunella margarita(Lour.) Swingle, commonly known as kumquat, is the smallest citrus fruit. It thrives in southeastern China and is widely cultivated and consumed in the world due to its multiple health benefits. ...Fortunella margarita(Lour.) Swingle, commonly known as kumquat, is the smallest citrus fruit. It thrives in southeastern China and is widely cultivated and consumed in the world due to its multiple health benefits. It has been used as an important herbal medicine in traditional Chinese medicine and also as one of the most popular fruits. There are various kinds of bioactive compounds in F. margarita, such as polysaccharides, limonoids, essential oils, flavonoids, phenolic acids, vitamins, dietary fiber, etc. In addition, many studies have reported that these bioactive compounds can be used as antioxidant, antimicrobial, hypolipidemic, drosophila lure components in functional foods, pharmaceuticals and daily chemical products due to their biological activities. This review focuses on the structural features and biological activities of polysaccharides, limonoids, essential oils and flavonoids and other bioactive substances from F. margarita and their potential applications in food, daily chemical and pharmaceutical industries.展开更多
The aim of this study is to follow each development stage of inflorescence in order to understand the biological feature of flowering and the development of male gametophyte in Anthurium andreanum “Arizona' and ...The aim of this study is to follow each development stage of inflorescence in order to understand the biological feature of flowering and the development of male gametophyte in Anthurium andreanum “Arizona' and to try to find the optimum conditions for its pollination. The methods of dissection and paraffin section were adopted to examine the structural characteristics of anthurium’s tiny floret and the development of the microspore. All the florets of the anthurium arrange on the rhachis helically sub- tended by a colorful bract. Each tiny floret has one gynoecium, four tepals and four stamina. The bract and the florets show different colors during the whole blooming period. The ovary is bicarpellary and has two locules, each of which has one anatropous ovule. The placenta is of a central placentation type. The stylar canal cells not only can produce the secretory mucilage but also can release their own cytoplasm caused by their self-disintegration before the pistil reaches its maturity. The wall of the anther is composed of four layers: epidermis, endothecium, middle layer and tapetum. The tapetal cells and the middle layers’ cells degenerated completely dur- ing meiosis of microsporocytes. The pollen grains were 2-celled at the time of anther dehiscence. Early morning, when the inflores- cences stay at their fifth development stage, is the optimum opportunity for pistil to get pollen grains. The pollen-collection should be done at the end of the seventh stage.展开更多
Our previous studies revealed that second malevibration signal (SMVS) restrained the matingbehavior of N. lugens, the influences of threebiological features (density, age, and wingform) on SMVS’s inhibitory effect we...Our previous studies revealed that second malevibration signal (SMVS) restrained the matingbehavior of N. lugens, the influences of threebiological features (density, age, and wingform) on SMVS’s inhibitory effect were hereinstudied by playing back its record. The dura-tion of playback was 4 h. Except otherwisestatement, N. lugens tested were virginmacropterous males and females aged 4-6 d af-ter emergence, and the density was 5 pairs (5females and 5 males) of N. lugens per cage (4cm in diameter and 8 cm in height). The in-hibitory effect of SMVS was evaluated usingmating rate (i. e. the rate of females withspermatophore). The results were as follows:展开更多
With the development of radiotherapeutic oncology, computer technology and medical imaging technology, radiation therapy has made great progress. Research on the impact and the specific mechanism of radiation on tumor...With the development of radiotherapeutic oncology, computer technology and medical imaging technology, radiation therapy has made great progress. Research on the impact and the specific mechanism of radiation on tumors has become a central topic in cancer therapy. According to the traditional view, radiation can directly affect the structure of the DNA double helix, which in turn activates DNA damage sensors to induce apoptosis, necrosis, and aging or affects normal mitosis events and ultimately rewires various biological characteristics of neoplasm cells. In addition, irradiation damages subcellular structures, such as the cytoplasmic membrane, endoplasmic reticulum, ribosome, mitochondria, and lysosome of cancer cells to regulate various biological activities of tumor cells. Recent studies have shown that radiation can also change the tumor cell phenotype, immunogenicity and microenvironment, thereby globally altering the biological behavior of cancer cells. In this review, we focus on the effects of therapeutic radiation on the biological features of tumor cells to provide a theoretical basis for combinational therapy and inaugurate a new era in oncology.展开更多
基金Supported by Graduate Innovation Foundation of Harbin Medical University No.HCXB2010010Key Technology Project of Heilongjiang Science and Technology Department,No.ZJY04-0102
文摘AIM:To investigate the biological features of hepatitis B virus(HBV)-transfected HepG2.2.15 cells. METHODS:The cell ultrastructure,cell cycle and apoptosis,and the abilities of proliferation and invasion of HBV-transfected HepG2.2.15 and the parent HepG2 cells were examined by electron microscopy,flow cytometry, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trans-well assay.Oncogenicity of the two cell lines was compared via subcutaneous injection and orthotopic injection or implantation in nude mice,and the pathological analysis of tumor formation was performed.Two cytoskeletal proteins were detected by Western blotting. RESULTS:Compared with HepG2 cells,HepG2.2.15 cells showed organelle degeneration and filopodia disappearance under electron microscope.HepG2.2.15 cells proliferated and migrated slowly in vitro,and hardly formed tumor and lung metastasis in nude mice.Flow cytometry showed that the majority of HepG2.2.15 cells were arrested in G1 phase,and apoptosis was minor in both cell lines.Furthermore,the levels of cytoskeletal proteins F-actin and Ezrin were decreased in HepG2.2.15 cells. CONCLUSION:HepG2.2.15 cells demonstrated a lower proliferation and invasion ability than the HepG2 cells due to HBV transfection.
基金Supported by the Natural Science Foundation of Fujian Province(2016J05068)High Level University Construction Projects of Fujian Agriculture and Forestry University(612014042)+2 种基金Science and Technology Development Foundation Project of Fujian Agriculture and Forestry University(KF2015101)Leading Talents Support Program of Science and Technology Innovation in Fujian Province(KRC16002A)Excellent Talents Support Program of Colleges and Universities in Fujian Province(JA14094)
文摘Fortunella margarita(Lour.) Swingle, commonly known as kumquat, is the smallest citrus fruit. It thrives in southeastern China and is widely cultivated and consumed in the world due to its multiple health benefits. It has been used as an important herbal medicine in traditional Chinese medicine and also as one of the most popular fruits. There are various kinds of bioactive compounds in F. margarita, such as polysaccharides, limonoids, essential oils, flavonoids, phenolic acids, vitamins, dietary fiber, etc. In addition, many studies have reported that these bioactive compounds can be used as antioxidant, antimicrobial, hypolipidemic, drosophila lure components in functional foods, pharmaceuticals and daily chemical products due to their biological activities. This review focuses on the structural features and biological activities of polysaccharides, limonoids, essential oils and flavonoids and other bioactive substances from F. margarita and their potential applications in food, daily chemical and pharmaceutical industries.
基金Supported by the Graduate Students’ Research Foundation of Beijing Forestry University
文摘The aim of this study is to follow each development stage of inflorescence in order to understand the biological feature of flowering and the development of male gametophyte in Anthurium andreanum “Arizona' and to try to find the optimum conditions for its pollination. The methods of dissection and paraffin section were adopted to examine the structural characteristics of anthurium’s tiny floret and the development of the microspore. All the florets of the anthurium arrange on the rhachis helically sub- tended by a colorful bract. Each tiny floret has one gynoecium, four tepals and four stamina. The bract and the florets show different colors during the whole blooming period. The ovary is bicarpellary and has two locules, each of which has one anatropous ovule. The placenta is of a central placentation type. The stylar canal cells not only can produce the secretory mucilage but also can release their own cytoplasm caused by their self-disintegration before the pistil reaches its maturity. The wall of the anther is composed of four layers: epidermis, endothecium, middle layer and tapetum. The tapetal cells and the middle layers’ cells degenerated completely dur- ing meiosis of microsporocytes. The pollen grains were 2-celled at the time of anther dehiscence. Early morning, when the inflores- cences stay at their fifth development stage, is the optimum opportunity for pistil to get pollen grains. The pollen-collection should be done at the end of the seventh stage.
文摘Our previous studies revealed that second malevibration signal (SMVS) restrained the matingbehavior of N. lugens, the influences of threebiological features (density, age, and wingform) on SMVS’s inhibitory effect were hereinstudied by playing back its record. The dura-tion of playback was 4 h. Except otherwisestatement, N. lugens tested were virginmacropterous males and females aged 4-6 d af-ter emergence, and the density was 5 pairs (5females and 5 males) of N. lugens per cage (4cm in diameter and 8 cm in height). The in-hibitory effect of SMVS was evaluated usingmating rate (i. e. the rate of females withspermatophore). The results were as follows:
基金financially supported by grants from the CAMS Innovation Fund for Medical Sciences(CIFMS)(No.2016-I2M-1-001)the National Basic Research Program of China(973 Program)(No.2015CB553904)+1 种基金the National Natural Science Foundation of China(No.81372158,81372159,81572842,81672459)the Independent Issue of State Key Laboratory of Molecular Oncology(No.SKL-2017-16)
文摘With the development of radiotherapeutic oncology, computer technology and medical imaging technology, radiation therapy has made great progress. Research on the impact and the specific mechanism of radiation on tumors has become a central topic in cancer therapy. According to the traditional view, radiation can directly affect the structure of the DNA double helix, which in turn activates DNA damage sensors to induce apoptosis, necrosis, and aging or affects normal mitosis events and ultimately rewires various biological characteristics of neoplasm cells. In addition, irradiation damages subcellular structures, such as the cytoplasmic membrane, endoplasmic reticulum, ribosome, mitochondria, and lysosome of cancer cells to regulate various biological activities of tumor cells. Recent studies have shown that radiation can also change the tumor cell phenotype, immunogenicity and microenvironment, thereby globally altering the biological behavior of cancer cells. In this review, we focus on the effects of therapeutic radiation on the biological features of tumor cells to provide a theoretical basis for combinational therapy and inaugurate a new era in oncology.