期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Some Refinement of Holder’s and Its Reverse Inequality
1
作者 Musa O. Tijani Adefisayo Ojo Oludotun Akinsola 《Advances in Pure Mathematics》 2023年第9期597-609,共13页
Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality... Holder’s inequality, its refinement, and reverse have received considerable attention in the theory of mathematical analysis and differential equations. In this paper, we give some refinements of Holder’s inequality and its reverse using a simple analytical technique of algebra and calculus. Our results show many results related to holder’s inequality as special cases of the inequalities presented. 展开更多
关键词 Young’s inequality Kittaneh-Manasrah’s inequality Integrable Function holder’s Cauchy-Schwarz inequality
下载PDF
On an Extension of Hibert's Inequality and Applications 被引量:1
2
作者 YANG Bi-cheng 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第1期96-102,共7页
This paper gives a new generalization of Hilbert's inequality with a best constant factor involving the β function. An applications, we consider the equivalent form and some particular results.
关键词 Hilbert's inequality weight coefficient β function holder's inequality
下载PDF
Necessary and Sufficient Conditions of Doubly Weighted Hardy-Littlewood-Sobolev Inequality 被引量:1
3
作者 Zuoshunhua Shi Wu Di Dunyan Yan 《Analysis in Theory and Applications》 2014年第2期193-204,共12页
Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be poin... Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞. 展开更多
关键词 holder's inequality Young's inequality Hardy-Littlewood-Sobolev inequality Lorentz space.
下载PDF
Application Of Jessen's Type Inequality For Positive C0-Semigroup Of Operators
4
作者 Gul I Hina Aslam Matloob Anwar 《Journal of Statistical Science and Application》 2015年第4期122-129,共8页
Recently in [4], the Jessen's type inequality for normalized positive C0-semigroups is obtained. In this note, we present few results of this inequality, yielding Holder's Type and Minkowski's type inequalities for... Recently in [4], the Jessen's type inequality for normalized positive C0-semigroups is obtained. In this note, we present few results of this inequality, yielding Holder's Type and Minkowski's type inequalities for corresponding semigroup. Moreover, a Dresher's type inequality for two-parameter family of means, is also proved. 展开更多
关键词 Mean inequalities Positive semigroup of operators holder's Type inequality Minkowski's Typeinequality Dresher's Type inequality.
下载PDF
Some Equivalent Forms of Bernoulli’s Inequality: A Survey
5
作者 Yuan-Chuan Li Cheh-Chih Yeh 《Applied Mathematics》 2013年第7期1070-1093,共24页
The main purpose of this paper is to link some known inequalities which are equivalent to Bernoulli’s inequality.
关键词 Bernoulli’s inequality Young’s inequality Jensen’s inequality holder’s inequality Cauchy’s inequality Minkowski’s inequality Schlomich’s inequality AGM inequality Jacobsthal’s inequality EQUIVALENT
下载PDF
Modified approximation and error estimation for King’s type(p,q)-BBH operators 被引量:1
6
作者 M.Mursaleen Mohd.Ahasan Asif Khan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第2期199-212,共14页
In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of... In this paper,the King’s type modification of(p,q)-Bleimann-Butzer and Hahn operators is defined.Some results based on Korovkin’s approximation theorem for these new operators are studied.With the help of modulus of continuity and the Lipschitz type maximal functions,the rate of convergence for these new operators are obtained.It is shown that the King’s type modification have better rate of convergence,flexibility than classical(p,q)-BBH operators on some subintervals.Further,for comparisons of the operators,we presented some graphical examples and the error estimation in the form of tables through MATLAB(R2015a) 展开更多
关键词 (p q)-integers (p q)-Bleimann-Butzer and Hahn operators King's type modi cation modulus of continuity holder inequality and Lipschitz functions
下载PDF
On Hardy-type integral inequalities
7
作者 冷拓 冯勇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1297-1304,共8页
The Hardy integral inequality is one of the most important inequalities in analysis. The present paper establishes some new Copson-Pachpatte (C-P) type inequalities, which are the generalizations of the Hardy integr... The Hardy integral inequality is one of the most important inequalities in analysis. The present paper establishes some new Copson-Pachpatte (C-P) type inequalities, which are the generalizations of the Hardy integral inequalities on binary functions. 展开更多
关键词 Hardy inequality holder inequality Copson inequality Izumi inequality Pachpatte inequality
下载PDF
Commutators of Singular Integral Operators Related to Magnetic Schrdinger Operators
8
作者 Wanqing Ma Yu Liu 《Analysis in Theory and Applications》 CSCD 2018年第1期45-56,共12页
Let A=-( -ia)·( -ia)+V be a magnetic Schrodinger operator on L^2(R^n),n〉2,where a:=(a1,…,an)∈Lloc^2(R^n,R^n) and 0≤V ∈Lloc^1(R^n).In this paper, we show that for a function b in Lipschitz space... Let A=-( -ia)·( -ia)+V be a magnetic Schrodinger operator on L^2(R^n),n〉2,where a:=(a1,…,an)∈Lloc^2(R^n,R^n) and 0≤V ∈Lloc^1(R^n).In this paper, we show that for a function b in Lipschitz space Lipa(R^n)with a∈(0,1),the commutator [b,V1/2A^-1/2]is bounded from L^p(R^n)to L^q(R^n),where p,q∈(1,2] and 1/p-1/q=a/n. 展开更多
关键词 COMMUTATOR Lipschitz space the sharp maxical function magnetic Schrodingeroperator holder inequality.
下载PDF
REGULARITY FOR VERY WEAK SOLUTIONS TO A-HARMONIC EQUATION
9
作者 Liu Lin Gao Hongya 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第3期343-349,共7页
In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 =... In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 = r2(n, r1,p) 〉 p, such that for every very weak solution u∈W^1r1,loc(Ω) to A-harmonic equation, u also belongs to W^1r2,loc(Ω) . In particular, u is the weak solution to A-harmonic equation in the usual sense. 展开更多
关键词 A-harmonic equation very weak solution Hodge decomposition weak reverse holder inequality.
下载PDF
Some General Inequalities for Choquet Integral
10
作者 Xiuli Yang Xiaoqiu Song Leilei Huang 《Applied Mathematics》 2015年第14期2292-2299,共8页
With the development of fuzzy measure theory, the integral inequalities based on Sugeno integral are extensively investigated. We concern on the inequalities of Choquuet integral. The main purpose of this paper is to ... With the development of fuzzy measure theory, the integral inequalities based on Sugeno integral are extensively investigated. We concern on the inequalities of Choquuet integral. The main purpose of this paper is to prove the H?lder inequality for any arbitrary fuzzy measure-based Choquet integral whenever any two of these integrated functions f, g and h are comonotone, and there are three weights. Then we prove Minkowski inequality and Lyapunov inequality for Choquet integral. Moreover, when any two of these integrated functions f1, f2, …, fn are comonotone, we also obtain the H&ouml;lder inequality, Minkowski inequality and Lyapunov inequality hold for Choquet integral. 展开更多
关键词 Choquet Integral Fuzzy Measure Comonotone holder inequality Minkowski inequality Lyapunov inequality
下载PDF
Hermite-Hadamard Type Fractional Integral Inequalities for Preinvex Functions 被引量:1
11
作者 lian tie-yan tang wei +1 位作者 zhou rui ji you-qing 《Communications in Mathematical Research》 CSCD 2018年第4期351-362,共12页
In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function... In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function in second sense is introduced and then a new Herrnite-Hadarnard inequality is derived for the class of logarithmically s-Godunova-Levin-preinvex function. 展开更多
关键词 Hermite-Hadamard's integral inequality Riemann-Liouville fractional integral holder's integral inequality
下载PDF
Some Hermite-Hadamard Type Inequalities for Differentiable Co-Ordinated Convex Functions and Applications
12
作者 Kai-Chen Hsu 《Advances in Pure Mathematics》 2014年第7期326-340,共15页
In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality... In this paper, we shall establish an inequality for differentiable co-ordinated convex functions on a rectangle from the plane. It is connected with the left side and right side of extended Hermite-Hadamard inequality in two variables. In addition, six other inequalities are derived from it for some refinements. Finally, this paper shows some examples that these inequalities are able to be applied to some special means. 展开更多
关键词 Hermite-Hadamard’s inequality Convex Function Co-Ordintaed Convex Function holder’s inequality
下载PDF
The Generalization on Inequalities of Hermite-Hadamard's Integration
13
作者 连铁艳 汤伟 《Chinese Quarterly Journal of Mathematics》 2017年第1期34-41,共8页
Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a ne... Some new inequalities of Hermite-Hadamard's integration are established. As for as inequalities about the righthand side of the classical Hermite-Hadamard's integral inequality refined by S Qaisar in [3], a new upper bound is given. Under special conditions,the bound is smaller than that in [3]. 展开更多
关键词 Hermite-Hadamard’s integral inequality convex function the holder’s integral inequality third derivative
下载PDF
Regularity for weakly(K_(1),K_(2))-quasiregular mappings 被引量:2
14
作者 高红亚 《Science China Mathematics》 SCIE 2003年第4期499-505,共7页
In this paper, we first give the definition of weakly (K1,K2-quasiregular mappings, and then by using the Hodge decomposition and the weakly reverse H?lder inequality, we obtain their regularity property: For anyq 1 t... In this paper, we first give the definition of weakly (K1,K2-quasiregular mappings, and then by using the Hodge decomposition and the weakly reverse H?lder inequality, we obtain their regularity property: For anyq 1 that satisfies $0< K_1 n^{(n + 4)/2} 2^{n + 1} \times 100^{n^2 } [2^{3n/2} (2^{5n} + 1)](n - q_1 )< 1$ , there existsp 1=p 1(n,q 1,K 1,K 2)>n, such that any (K1, K2)-quasiregular mapping $f \in W_{loc}^{1,q_1 } (\Omega ,R^n )$ is in fact in $W_{loc}^{1,p_1 } (\Omega , R^n )$ . That is, f is (K1,K2)-quasiregular in the usual sense. 展开更多
关键词 weakly(K_(1) K_(2))-quasiregular mapping Hodge decomposition weakly reverse holder inequality REGULARITY
原文传递
Regularity Results for the Generalized Beltrami System 被引量:1
15
作者 Shen Zhou ZHENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第2期293-304,共12页
For the generalized Beltrami system with two characteristic matrices, we deal with the regularity of its very weak solutions in the Sobolev class (1 < r < n). By changing the generalized Beltrami system into a ... For the generalized Beltrami system with two characteristic matrices, we deal with the regularity of its very weak solutions in the Sobolev class (1 < r < n). By changing the generalized Beltrami system into a class of a divergent elliptic system with nonhomogeneous items, we obtain that each of its very weak solutions is essentially a classical weak solution of a usual Sobolev class. Furthermore, we also establish a higher regularity of its weak solution if the regularity hypotheses of two characteristic matrices are improved. 展开更多
关键词 Weakly K-quasiregular Generalized Beltrami system Very weak solutions Hodge decomposition Generalized reverse holder inequality
原文传递
Regularity for Quasi-linear Degenerate Elliptic Equations with VMO Coefficients
16
作者 Shen Zhou ZHENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第11期1909-1924,共16页
In this paper we establish an interior regularity of weak solution for quasi-linear degenerate elliptic equations under the subcritical growth if its coefficient matrix A(x, u) satisfies a VMO condition in the varia... In this paper we establish an interior regularity of weak solution for quasi-linear degenerate elliptic equations under the subcritical growth if its coefficient matrix A(x, u) satisfies a VMO condition in the variable x uniformly with respect to all u, and the lower order item B(x, u, △↓u) satisfies the subcritical growth (1.2). In particular, when F(x) ∈ L^q(Ω) and f(x) ∈ L^γ(Ω) with q,γ 〉 for any 1 〈 p 〈 +∞, we obtain interior HSlder continuity of any weak solution of (1.1) u with an index κ = min{1 - n/q, 1 - n/γ}. 展开更多
关键词 VMO functions subcritical growth Morrey's spaces reverse holder inequality
原文传递
Spectrum and Singular Integrals on a New Weighted Function Space
17
作者 Hee Chul PAK Young Ja PARK 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第11期1692-1702,共11页
We introduce a new function space that is much finer than the classical Lebesgue spaces, and investigate the continuity and the discontinuity of the Calderon-Zygmund operators on the new weighted spaces. In order to i... We introduce a new function space that is much finer than the classical Lebesgue spaces, and investigate the continuity and the discontinuity of the Calderon-Zygmund operators on the new weighted spaces. In order to identify the continuity of singular integrals, we prove an interpolation theorem on the new spaces and propose a concept of the spectrum of base functions. 展开更多
关键词 Function spaces singular integrals INTERPOLATION Calderdn Zygmund operators holder's inequality L log L
原文传递
Some Source Coding Theorems and 1:1 Coding Based on Generalized Inaccuracy Measure of Order α and Typeβ
18
作者 Satish Kumar Arun Choudhary Arvind Kumar 《Communications in Mathematics and Statistics》 SCIE 2014年第2期125-138,共14页
In this paper,we have established some noiseless coding theorems for a generalized parametric‘useful’inaccuracy measure of orderαand typeβand generalized mean codeword length.Further,lower bounds on exponentiated ... In this paper,we have established some noiseless coding theorems for a generalized parametric‘useful’inaccuracy measure of orderαand typeβand generalized mean codeword length.Further,lower bounds on exponentiated useful code length for the best 1:1 code have been obtained in terms of the useful inaccuracy of orderαand typeβand the generalized average useful codeword length. 展开更多
关键词 Generalized inaccuracy measures Mean codeword length holder’s inequality
原文传递
NEW DYNAMIC INEQUALITIES FOR DECREASING FUNCTIONS AND THEOREMS OF HIGHER INTEGRABILITY
19
作者 S.H.Saker D.O'Regan +1 位作者 M.M.Osman R.P.Agarwal 《Annals of Applied Mathematics》 2018年第2期165-177,共13页
In this paper we establish some new dynamic inequalities on time scales which contain in particular generalizations of integral and discrete inequalities due to Hardy, Littlewood, Polya, D'Apuzzo, Sbordone and Popoli... In this paper we establish some new dynamic inequalities on time scales which contain in particular generalizations of integral and discrete inequalities due to Hardy, Littlewood, Polya, D'Apuzzo, Sbordone and Popoli. We also apply these inequalities to prove a higher integrability theorem for decreasing functions on time scales. 展开更多
关键词 reverse holder's inequality Gehring class higher integrability Hardy-Littlewood-Polya inequality time scales
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部