We consider the approximation of systems of reaction-diffusion equations, with the finite element method. The highest derivative in each equation is multiplied by a parameter ε∈ (0, 1], and as ε → 0 the solution ...We consider the approximation of systems of reaction-diffusion equations, with the finite element method. The highest derivative in each equation is multiplied by a parameter ε∈ (0, 1], and as ε → 0 the solution of the system will contain boundary layers. We extend the analysis of the corresponding scalar problem from [Melenk, IMA J. Numer. Anal. 17(1997), pp. 577-601], to construct a finite element scheme which includes elements of size O(εp) near the boundary, where p is the degree of the approximating polynomials. We show that, under the assumption of analytic input data, the method yields exponential rates of convergence, independently of ε, when the error is measured in the energy norm associated with the problem. Numerical computations supporting the theory are also presented, which also show that the method yields robust exponential convergence rates when the error in the maximum norm is used.展开更多
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectra...The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservation laws. An orthogonal spectral basis written in terms of Jacobi polynomials is applied. High computational efficiency is obtained due to such matrix-free algorithm. The formulation is conservative, and essential nomoscillation is enforced by the HR limiter. We show that HR preserves the order of accuracy of the spectral/hp element method for smooth solution problems and generate essentially non-oscillatory solutions profiles for capturing discontinuous solutions without local characteristic decomposition. In addition, we introduce a postprocessing technique to improve HR for limiting high degree numerical solutions.展开更多
文摘We consider the approximation of systems of reaction-diffusion equations, with the finite element method. The highest derivative in each equation is multiplied by a parameter ε∈ (0, 1], and as ε → 0 the solution of the system will contain boundary layers. We extend the analysis of the corresponding scalar problem from [Melenk, IMA J. Numer. Anal. 17(1997), pp. 577-601], to construct a finite element scheme which includes elements of size O(εp) near the boundary, where p is the degree of the approximating polynomials. We show that, under the assumption of analytic input data, the method yields exponential rates of convergence, independently of ε, when the error is measured in the energy norm associated with the problem. Numerical computations supporting the theory are also presented, which also show that the method yields robust exponential convergence rates when the error in the maximum norm is used.
基金Research was supported in part by NSF grant DMS-0800612Research was supported by Applied Mathematics program of the US DOE Office of Advanced Scientific Computing ResearchThe Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830
文摘The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM '07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservation laws. An orthogonal spectral basis written in terms of Jacobi polynomials is applied. High computational efficiency is obtained due to such matrix-free algorithm. The formulation is conservative, and essential nomoscillation is enforced by the HR limiter. We show that HR preserves the order of accuracy of the spectral/hp element method for smooth solution problems and generate essentially non-oscillatory solutions profiles for capturing discontinuous solutions without local characteristic decomposition. In addition, we introduce a postprocessing technique to improve HR for limiting high degree numerical solutions.