In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass subs...In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass substrate has good antireflection properties. Its surface reflectance can be reduced by - 50% compared with planar glass. The HP arrays can make the unabsorbed light return to the absorbing layer of solar cells, and the ratio of second absorption approximately equals 30%. Thus, the glass substrate with the hemisphere pit arrays (HP glass) can effectively reduce the total reflectivity of a solar celt from 20% to 13%. The lip glass can also prolong the optical path length. The numerical results show that the total optical path length of the thin film Si solar cell covered with the HP glass increases from 2ω to 409. These results are basically consistent with the experimental results.展开更多
The short term(hourly scale)variability of heterotrophic prokaryote(HP)vertical distribution and respiratory activity,was investigated in the north-western(NW)Mediterranean Sea.HP vertical distribution was determined ...The short term(hourly scale)variability of heterotrophic prokaryote(HP)vertical distribution and respiratory activity,was investigated in the north-western(NW)Mediterranean Sea.HP vertical distribution was determined on board by flow cytometry analysis of seawater samples collected by series of CTD casts.Cell counts and viability were determined for all samples.HP respiratory rates were determined later in the laboratory from filtered seawater samples(23 dm^(3))from 300-1150-m depth.The average cell viability was 94.8%±2.2%(n=240).There was no accumulation of dead cells,due to quick decay of damaged cells.In the epipelagic layer,three HP groups were distinguished,two(HNA1,HNA2)who se cells exhibited a high nucleic acid content and one(LNA)with low nucleic acid content cells.HNA2 was most populated at 50 m but not detected at 90 m and below,presumably aerobic anoxygenic photoheterotrophic bacteria(AAPs).The variability in HP abundance was mainly confined in the upper 80 m.A few secondary peaks of HP abundance were observed(80-150 m)in connection with abundance troughs in the surface layer.HP cells were continuously present in a wide layer around 500 m(mean 191×10^(3)cells/cm^(3)).Below this layer,HP abundance randomly exhibited peaks,coupled to respiratory rate peaks.The HP abundance and variability in the water column was suppressed during a strong wind event.The observed sporadic variability was tentatively interpreted through a pulsed carbon-export mechanism induced by the microorganism production of dissolved poly saccharide s,followed by flocculation and rapid sinking.This mechanism would thus contribute to(ⅰ)preventing organic matter accumulation in the epipelagic layer,(ⅱ)seeding the water column with live HP cells,and(ⅲ)supplying the aphotic water column with fre sh and labile organic matter.This important vertical flux mechanism needs further observations and modelling.展开更多
基金Project supported by the National High-Tech Research and Development Program of China(Grant No.2011AA050518)
文摘In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass substrate has good antireflection properties. Its surface reflectance can be reduced by - 50% compared with planar glass. The HP arrays can make the unabsorbed light return to the absorbing layer of solar cells, and the ratio of second absorption approximately equals 30%. Thus, the glass substrate with the hemisphere pit arrays (HP glass) can effectively reduce the total reflectivity of a solar celt from 20% to 13%. The lip glass can also prolong the optical path length. The numerical results show that the total optical path length of the thin film Si solar cell covered with the HP glass increases from 2ω to 409. These results are basically consistent with the experimental results.
基金Supported by the PROOF Grant provided by the INSU-CNRS and was part of the PECHE project“Production and exportation of carbon:control by heterotrophic organisms at small time scales”。
文摘The short term(hourly scale)variability of heterotrophic prokaryote(HP)vertical distribution and respiratory activity,was investigated in the north-western(NW)Mediterranean Sea.HP vertical distribution was determined on board by flow cytometry analysis of seawater samples collected by series of CTD casts.Cell counts and viability were determined for all samples.HP respiratory rates were determined later in the laboratory from filtered seawater samples(23 dm^(3))from 300-1150-m depth.The average cell viability was 94.8%±2.2%(n=240).There was no accumulation of dead cells,due to quick decay of damaged cells.In the epipelagic layer,three HP groups were distinguished,two(HNA1,HNA2)who se cells exhibited a high nucleic acid content and one(LNA)with low nucleic acid content cells.HNA2 was most populated at 50 m but not detected at 90 m and below,presumably aerobic anoxygenic photoheterotrophic bacteria(AAPs).The variability in HP abundance was mainly confined in the upper 80 m.A few secondary peaks of HP abundance were observed(80-150 m)in connection with abundance troughs in the surface layer.HP cells were continuously present in a wide layer around 500 m(mean 191×10^(3)cells/cm^(3)).Below this layer,HP abundance randomly exhibited peaks,coupled to respiratory rate peaks.The HP abundance and variability in the water column was suppressed during a strong wind event.The observed sporadic variability was tentatively interpreted through a pulsed carbon-export mechanism induced by the microorganism production of dissolved poly saccharide s,followed by flocculation and rapid sinking.This mechanism would thus contribute to(ⅰ)preventing organic matter accumulation in the epipelagic layer,(ⅱ)seeding the water column with live HP cells,and(ⅲ)supplying the aphotic water column with fre sh and labile organic matter.This important vertical flux mechanism needs further observations and modelling.