Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The r...Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.展开更多
According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system a...According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system are analyzed and the relationship between the load and the manufacturing quality is obtained. The basic rule of the stiffness variation is presented and the theoretical analysis is in a good agreement with experimental results. The dynamic stiffness must also be considered to evaluate the performance of the tooling system besides the staticstiffness. Finally, the selecting principles of the HSK types are proposed and their optimum operating conditions are established.展开更多
文摘Based on the theory of elastic mechanics and material mechanics, the orientation precision of the hohl schaft kegel(HSK) tooling system in static and dynamic states is theoretically and experimentally studied. The relation between the clamping force and the shank taper is obtained. And a proper clamping force is found to be essential to assure the axial and radial orientation precisions of the HSK tooling system in high speed machining (HSM). Analytical results show that the reason why the HSK tooling system can keep high precision at the high rotational speed is that the actual axial clamping force keeps the two surfaces of the shank and the spindle in contact all the time.
文摘According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system are analyzed and the relationship between the load and the manufacturing quality is obtained. The basic rule of the stiffness variation is presented and the theoretical analysis is in a good agreement with experimental results. The dynamic stiffness must also be considered to evaluate the performance of the tooling system besides the staticstiffness. Finally, the selecting principles of the HSK types are proposed and their optimum operating conditions are established.