期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Improved Logistic Regression Algorithm Based on Kernel Density Estimation for Multi-Classification with Non-Equilibrium Samples
1
作者 Yang Yu Zeyu Xiong +1 位作者 Yueshan Xiong Weizi Li 《Computers, Materials & Continua》 SCIE EI 2019年第7期103-117,共15页
Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classifi... Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classification problem,such as problem with non-equilibrium samples.Many scholars have proposed some methods,such as neural network,least square support vector machine,AdaBoost meta-algorithm,etc.These methods essentially belong to machine learning categories.In this work,based on the probability theory and statistical principle,we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification.We have compared our approach with other methods using non-equilibrium samples,the results show that our approach guarantees sample integrity and achieves superior classification. 展开更多
关键词 Logistic regression multi-classification kernel function density estimation NON-EQUILIBRIUM
下载PDF
Classifier for centrality determination with zero-degree calorimeter at the cooling-storage-ring external-target experiment
2
作者 Biao Zhang Li‑Ke Liu +3 位作者 Hua Pei Shu‑Su Shi Nu Xu Ya‑Ping Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期168-173,共6页
The zero-degree calorimeter(ZDC)plays a crucial role toward determining the centrality in the Cooling-Storage-Ring External-target Experiment(CEE)at the Heavy Ion Research Facility in Lanzhou.A boosted decision tree(B... The zero-degree calorimeter(ZDC)plays a crucial role toward determining the centrality in the Cooling-Storage-Ring External-target Experiment(CEE)at the Heavy Ion Research Facility in Lanzhou.A boosted decision tree(BDT)multi-classification algorithm was employed to classify the centrality of the collision events based on the raw features from ZDC such as the number of fired channels and deposited energy.The data from simulated^(238)U+^(238)U collisions at 500 MeV∕u,generated by the IQMD event generator and subsequently modeled using the GEANT4 package,were employed to train and test the BDT model.The results showed the high accuracy of the multi-classification model adopted in ZDC for centrality determination,which is robust against variations in different factors of detector geometry and response.This study demon-strates the good performance of CEE-ZDC in determining the centrality in nucleus-nucleus collisions. 展开更多
关键词 ZDC Boosted decision trees multi-classification IQMD Centrality determination
下载PDF
Deep Learning with a Novel Concoction Loss Function for Identification of Ophthalmic Disease
3
作者 Sayyid Kamran Hussain Ali Haider Khan +3 位作者 Malek Alrashidi Sajid Iqbal Qazi Mudassar Ilyas Kamran Shah 《Computers, Materials & Continua》 SCIE EI 2023年第9期3763-3781,共19页
As ocular computer-aided diagnostic(CAD)tools become more widely accessible,many researchers are developing deep learning(DL)methods to aid in ocular disease(OHD)diagnosis.Common eye diseases like cataracts(CATR),glau... As ocular computer-aided diagnostic(CAD)tools become more widely accessible,many researchers are developing deep learning(DL)methods to aid in ocular disease(OHD)diagnosis.Common eye diseases like cataracts(CATR),glaucoma(GLU),and age-related macular degeneration(AMD)are the focus of this study,which uses DL to examine their identification.Data imbalance and outliers are widespread in fundus images,which can make it difficult to apply manyDL algorithms to accomplish this analytical assignment.The creation of efficient and reliable DL algorithms is seen to be the key to further enhancing detection performance.Using the analysis of images of the color of the retinal fundus,this study offers a DL model that is combined with a one-of-a-kind concoction loss function(CLF)for the automated identification of OHD.This study presents a combination of focal loss(FL)and correntropy-induced loss functions(CILF)in the proposed DL model to improve the recognition performance of classifiers for biomedical data.This is done because of the good generalization and robustness of these two types of losses in addressing complex datasets with class imbalance and outliers.The classification performance of the DL model with our proposed loss function is compared to that of the baseline models using accuracy(ACU),recall(REC),specificity(SPF),Kappa,and area under the receiver operating characteristic curve(AUC)as the evaluation metrics.The testing shows that the method is reliable and efficient. 展开更多
关键词 Deep learning multi-classification focal loss CNN eye disease
下载PDF
基于KPCA和SVM的火箭发动机试验台故障诊断方法 被引量:9
4
作者 朱宁 冯志刚 王祁 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第3期81-84,120,共5页
为了解决液体火箭发动机试验台的故障诊断问题,提出了一种基于核主元分析(KPCA)特征提取和支持向量多分类机(SVM)的故障诊断方法,该方法首先利用核主元分析对试验台标准故障样本进行特征提取,通过特征分析,建立适合于试验台故障状态识... 为了解决液体火箭发动机试验台的故障诊断问题,提出了一种基于核主元分析(KPCA)特征提取和支持向量多分类机(SVM)的故障诊断方法,该方法首先利用核主元分析对试验台标准故障样本进行特征提取,通过特征分析,建立适合于试验台故障状态识别的层次多分类支持向量机,并对其进行训练,然后将试验数据在主元上投影,输入到训练好的支持向量多分类器,对试验台故障状态进行识别.该方法充分利用了核主元分析强大的非线性特征提取能力和支持向量分类机良好的小样本泛化特性,解决了试验台故障诊断中的小样本、非线性模式识别问题.对试验台的试验结果表明,该方法是有效的、可行的. 展开更多
关键词 液体火箭发动机试验台 故障诊断 特征提取 核主元分析 层次支持向量多分类机
下载PDF
一种基于有监督局部决策分层支持向量机的异常检测方法 被引量:10
5
作者 徐琴珍 杨绿溪 《电子与信息学报》 EI CSCD 北大核心 2010年第10期2383-2387,共5页
该文针对包含多种攻击模式的高维特征空间中的异常检测问题,提出了一种基于有监督局部决策的分层支持向量机(HSVM)异常检测方法。通过HSVM的二叉树结构实现复杂异常检测问题的分而治之,即在每个中间节点上,通过信息增益准则构建有监督... 该文针对包含多种攻击模式的高维特征空间中的异常检测问题,提出了一种基于有监督局部决策的分层支持向量机(HSVM)异常检测方法。通过HSVM的二叉树结构实现复杂异常检测问题的分而治之,即在每个中间节点上,通过信息增益准则构建有监督学习所需的训练信号,监督局部决策;在每个嵌入中间节点的二分类支持向量机(SVM)的训练过程中,以局部决策边界对特征的敏感度为依据,选择入侵检测的局部最优特征子集。实验结果表明,该文提出的异常检测方法能够在训练信号的局部决策监督下构建具有良好稳定性的检测学习模型,并能以更精简的特征信息实现检测精确率和检测效率的提高。 展开更多
关键词 异常入侵检测 分层支持向量机 特征信用度 有监督局部决策
下载PDF
一种基于多分类语义分析和个性化的语义检索方法 被引量:1
6
作者 马应龙 李鹏鹏 张敬旭 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期261-265,共5页
为了进一步提升语义检索的精度和改善用户体验,提出了一种基于多分类语义分析和个性化的语义检索方法.首先,利用改进的多分类语义分析方法实现目标文档的向量化,并建立词向量库;然后,利用支持向量机对文档进行分类,并结合文档类别生成... 为了进一步提升语义检索的精度和改善用户体验,提出了一种基于多分类语义分析和个性化的语义检索方法.首先,利用改进的多分类语义分析方法实现目标文档的向量化,并建立词向量库;然后,利用支持向量机对文档进行分类,并结合文档类别生成标签索引.在检索时,根据词向量库的引导,使用用户历史检索记录和个人信息优化检索结果.实验结果显示,基于该方法的系统的检索精度、平均DCG和nDCG指标值分别达到0.7,7.267和0.890,较基于Lucene方法和Yahoo Directory方法所得结果的均值分别高出31%,36%和19%.在时间复杂度上,每次检索的平均耗时为0.669 s,较Lucene方法仅增加了0.326 s.由此可见,该方法提高了检索的精度和综合相关度,且额外的时间消耗较少. 展开更多
关键词 语义检索 多分类语义分析 词向量库 个性化算法 multi-classification SEMANTIC analysis (MSA) TERM vector database (TVDB )
下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:17
7
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
下载PDF
Multi-Purpose Forensics of Image Manipulations Using Residual-Based Feature 被引量:1
8
作者 Anjie Peng Kang Deng +1 位作者 Shenghai Luo Hui Zeng 《Computers, Materials & Continua》 SCIE EI 2020年第12期2217-2231,共15页
The multi-purpose forensics is an important tool for forge image detection.In this paper,we propose a universal feature set for the multi-purpose forensics which is capable of simultaneously identifying several typica... The multi-purpose forensics is an important tool for forge image detection.In this paper,we propose a universal feature set for the multi-purpose forensics which is capable of simultaneously identifying several typical image manipulations,including spatial low-pass Gaussian blurring,median filtering,re-sampling,and JPEG compression.To eliminate the influences caused by diverse image contents on the effectiveness and robustness of the feature,a residual group which contains several high-pass filtered residuals is introduced.The partial correlation coefficient is exploited from the residual group to purely measure neighborhood correlations in a linear way.Besides that,we also combine autoregressive coefficient and transition probability to form the proposed composite feature which is used to measure how manipulations change the neighborhood relationships in both linear and non-linear way.After a series of dimension reductions,the proposed feature set can accelerate the training and testing for the multi-purpose forensics.The proposed feature set is then fed into a multi-classifier to train a multi-purpose detector.Experimental results show that the proposed detector can identify several typical image manipulations,and is superior to the complicated deep CNN-based methods in terms of detection accuracy and time efficiency for JPEG compressed image with low resolution. 展开更多
关键词 Digital image forensics partial correlation auto-regression multi-classification
下载PDF
Hypersphere support vector machines based on generalized multiplicative updates
9
作者 吴青 刘三阳 张乐友 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期126-130,共5页
This paper proposes a novel hypersphere support vector machines (HSVMs) based on generalized multiplicative updates. This algorithm can obtain the boundary of hypersphere containing one class of samples by the descr... This paper proposes a novel hypersphere support vector machines (HSVMs) based on generalized multiplicative updates. This algorithm can obtain the boundary of hypersphere containing one class of samples by the description of the training samples from one class and use this boundary to classify the test samples. The generalized multiplicative updates are applied to solving boundary optimization progranmning. Multiplicative updates available are suited for nonnegative quadratic convex programming. The generalized multiplicative updates are derived to box and sum constrained quadratic programming in this paper. They provide an extremely straightforward way to implement support vector machines (SVMs) where all variables are updated in parallel. The generalized multiplicative updates converge monotonically to the solution of the maximum margin hyperplane. The experiments show the superiority of our new algorithm. 展开更多
关键词 hypersphere support vector machines hsvms) multiplicative updates sum and box constrained quadraticprogramming classification.
下载PDF
Does the Financial Status of Company Affect the Bond Credit Rating?--Empirical Evidence from China's Shanghai and Shenzhen Stock Exchanges
10
作者 Yuyan Cai 《Proceedings of Business and Economic Studies》 2021年第1期28-34,共7页
This article takes the companies that publicly issued corporate bonds on the Shanghai and Shenzhen Stock Exchanges from 2006 to 2018 as the research objects selecting six aspects that comprehensively reflect the 17 fi... This article takes the companies that publicly issued corporate bonds on the Shanghai and Shenzhen Stock Exchanges from 2006 to 2018 as the research objects selecting six aspects that comprehensively reflect the 17 financial variables in 6 aspects:profitability,operating ability,bond repayment ability,development ability,cash flow and market value of the company.Principal component analysis method and factor analysis method are used to extract the principal factors of these financial indicator variables.That is how an ordered multi-classification Logistic regression model is constructed to test the impact of the Shanghai and Shenzhen Stock Exchanges’financial status on the corporate bond credit rating.It turns out that the financial status of the Shanghai and Shenzhen Stock Exchanges have an important impact on the credit rating of corporate bonds.The financial status has a greater impact on corporate bonds with credit ratings of A-and AA-,while it has a smaller impact on corporate bonds with credit ratings above AA.The results of this article can help individual and institutional investors prevent risks from investing. 展开更多
关键词 Corporate finance Credit rating Factor analysis Ordered multi-classification Logistic model
下载PDF
最大间隔最小体积球形支持向量机 被引量:19
11
作者 文传军 詹永照 陈长军 《控制与决策》 EI CSCD 北大核心 2010年第1期79-83,共5页
结合支持向量机(SVM)类间最大分类间隔和支持向量数据描述(SVDD)类内最小描述体积思想,提出一种新的学习机器模型——最大间隔最小体积球形支持向量机(MMHSVM).模型建立两个大小不一的同心超球,将正负类样本分别映射到小超球内和大超球... 结合支持向量机(SVM)类间最大分类间隔和支持向量数据描述(SVDD)类内最小描述体积思想,提出一种新的学习机器模型——最大间隔最小体积球形支持向量机(MMHSVM).模型建立两个大小不一的同心超球,将正负类样本分别映射到小超球内和大超球外,模型目标函数最大化两超球间隔,实现正负类类间间隔的最大化和各类类内体积的最小化,提高了模型的分类能力.理论分析和实验结果表明该算法是有效的. 展开更多
关键词 支持向量机 支持向量数据描述 类间最大分类间隔 类内最小描述体积 球形支持向量机
原文传递
无溶剂高频振荡法合成β-烯胺酮(酯)的研究 被引量:4
12
作者 范文明 高建荣 +3 位作者 贾建洪 韩亮 盛卫坚 李郁锦 《有机化学》 SCIE CAS CSCD 北大核心 2010年第11期1732-1736,共5页
以伯胺和1,3-二羰化合物为原料,在高频振荡(HSVM)条件下采用无催化剂、无溶剂的新方法缩合一步合成18个β-烯胺酮(酯)类化合物,收率60.8%~96.5%.新方法具有反应条件温和、操作简单、产率高以及环境友好等优点.所得化合物的结构用核磁... 以伯胺和1,3-二羰化合物为原料,在高频振荡(HSVM)条件下采用无催化剂、无溶剂的新方法缩合一步合成18个β-烯胺酮(酯)类化合物,收率60.8%~96.5%.新方法具有反应条件温和、操作简单、产率高以及环境友好等优点.所得化合物的结构用核磁共振、气相质谱联用的方法进行了表征. 展开更多
关键词 烯胺酮(酯) 高频振荡 无溶剂 无催化剂
原文传递
A knowledge matching approach based on multiclassification radial basis function neural network for knowledge push system 被引量:2
13
作者 Shu-you ZHANG Ye GU +1 位作者 Guo-dong YI Zi-li WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第7期981-994,共14页
We present an exploratory study to improve the performance of a knowledge push system in product design. We focus on the domain of knowledge matching, where traditional matching algorithms need repeated calculations t... We present an exploratory study to improve the performance of a knowledge push system in product design. We focus on the domain of knowledge matching, where traditional matching algorithms need repeated calculations that result in a long response time and where accuracy needs to be improved. The goal of our approach is to meet designers’ knowledge demands with a quick response and quality service in the knowledge push system. To improve the previous work, two methods are investigated to augment the limited training set in practical operations,namely, oscillating the feature weight and revising the case feature in the case feature vectors. In addition, we propose a multi-classification radial basis function neural network that can match the knowledge from the knowledge base once and ensure the accuracy of pushing results. We apply our approach using the training set in the design of guides by computer numerical control machine tools for training and testing, and the results demonstrate the benefit of the augmented training set. Moreover, experimental results reveal that our approach outperforms other matching approaches. 展开更多
关键词 Product design Knowledge push system Augmented training set multi-classification neural network Knowledge matching
原文传递
Solvent and catalyst free azo-Michael addition under high-speed vibration milling 被引量:1
14
作者 LI YuJin CAO YongWen +4 位作者 XU FengShuang FANG WenMing YU WuBin JIA JianHong GAO JianRong 《Science China Chemistry》 SCIE EI CAS 2012年第7期1252-1256,共5页
Under the high-speed vibration milling conditions,the solvent and catalyst-free azo-Michael addition of chalcone derivatives and amines was found to proceed efficiently in excellent yields at ambient temperature in sh... Under the high-speed vibration milling conditions,the solvent and catalyst-free azo-Michael addition of chalcone derivatives and amines was found to proceed efficiently in excellent yields at ambient temperature in short reaction time.In most cases,conventional side reactions were avoided and thus quantitative yields were achieved.The influences of the vibration frequency and reaction time on the azo-Michael addition were investigated. 展开更多
关键词 azo-Michael addition solvent and catalyst-free hsvm CHALCONE
原文传递
Analyzing Electricity Consumption via Data Mining 被引量:1
15
作者 LIU Jinshuo LAN Huiying +2 位作者 FU Yizhen WU Hui LI Peng 《Wuhan University Journal of Natural Sciences》 CAS 2012年第2期121-125,共5页
This paper proposes a model to analyze the massive data of electricity.Feature subset is determined by the correla-tion-based feature selection and the data-driven methods.The attribute season can be classified succes... This paper proposes a model to analyze the massive data of electricity.Feature subset is determined by the correla-tion-based feature selection and the data-driven methods.The attribute season can be classified successfully through five classi-fiers using the selected feature subset,and the best model can be determined further.The effects on analyzing electricity consump-tion of the other three attributes,including months,businesses,and meters,can be estimated using the chosen model.The data used for the project is provided by Beijing Power Supply Bureau.We use WEKA as the machine learning tool.The models we built are promising for electricity scheduling and power theft detection. 展开更多
关键词 feature selection multi-classification prediction model data analysis
原文传递
A multi-class large margin classifier
16
作者 Liang TANG Qi XUAN +2 位作者 Rong XIONG Tie-jun WU Jian CHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第2期253-262,共10页
Currently there are two approaches for a multi-class support vector classifier(SVC). One is to construct and combine several binary classifiers while the other is to directly consider all classes of data in one optimi... Currently there are two approaches for a multi-class support vector classifier(SVC). One is to construct and combine several binary classifiers while the other is to directly consider all classes of data in one optimization formulation. For a K-class problem(K>2),the first approach has to construct at least K classifiers,and the second approach has to solve a much larger op-timization problem proportional to K by the algorithms developed so far. In this paper,following the second approach,we present a novel multi-class large margin classifier(MLMC). This new machine can solve K-class problems in one optimization formula-tion without increasing the size of the quadratic programming(QP) problem proportional to K. This property allows us to construct just one classifier with as few variables in the QP problem as possible to classify multi-class data,and we can gain the advantage of speed from it especially when K is large. Our experiments indicate that MLMC almost works as well as(sometimes better than) many other multi-class SVCs for some benchmark data classification problems,and obtains a reasonable performance in face recognition application on the AR face database. 展开更多
关键词 multi-classification Support vector machine (SVM) Quadratic programming (QP) problem Large margin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部