风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system...Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.展开更多
For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in...For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.展开更多
HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the sys...HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.展开更多
The interaction mechanism between AC and DC systems in a hybrid AC-DC transmission grid is discussed with PSS/E software. Analysis shows that receiving-end AC faults may cause much more damage on the HVDC system opera...The interaction mechanism between AC and DC systems in a hybrid AC-DC transmission grid is discussed with PSS/E software. Analysis shows that receiving-end AC faults may cause much more damage on the HVDC system operation than the sending-end AC faults in a multi-infeed HVDC system, and the damage severity depends on the power recovering rate of the HVDC systems. For HVDC systems with slow power recovering rate, the receiving-end AC faults may probably be a critical factor to constrain power transfer limits. Larger capacity of HVDC system means not only higher power transfer-limit of the parallel connected AC-DC transmission grid, but also more expensive stabilizing cost.展开更多
HVDC auxiliary power control can significantly improve the transient stability of AC/DC power grid.An HVDC adaptive emergency power support method based on unbalanced power on line estimation is proposed in this paper...HVDC auxiliary power control can significantly improve the transient stability of AC/DC power grid.An HVDC adaptive emergency power support method based on unbalanced power on line estimation is proposed in this paper.By establishing the extended state equation of the system,the on line dynamic estimation of unbalanced power of the system was realized.On this basis,power support was realized based on the principle of the ladder increment.The optimal DC was selected by the power support factor,and the emergency power support controller was installed on the DC.This emergency power support method can realize dynamic optimal power support with minimized control cost.The three infeed HVDC system was built on PSCAD.The simulation results show the effectiveness of the proposed method.展开更多
Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplie...Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.展开更多
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu...In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.展开更多
Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined contro...Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.展开更多
Huge amount of digital data of the Great East Japan Earthquake is provided by the highly-developed digital data technology. But the method and technique for analysis of these huge digital data are not developed suffic...Huge amount of digital data of the Great East Japan Earthquake is provided by the highly-developed digital data technology. But the method and technique for analysis of these huge digital data are not developed sufficiently. This paper proposes a running spectrum technique for text data and analyzing changes of disaster phase during the disaster management cycle. Impact analysis of the nuclear power plant accidents have been performed by using Fukushima Minpo newspaper for its verification. The result shows the dynamic characteristics of the nuclear power plant accidents. As the time interval B becomes longer, the analysis data is used from wide range period along with the smoothing effect. When observing different time intervals B, fewer keywords have been ranked in the longer time intervals of B. The proposed technique is a powerful tool to effective and efficient disaster response and management. analyze effectively the huge amount of digital data for the展开更多
随着广东电网负荷中心柔性互联工程的实施,电网分区间的交流联系变弱,大容量常规高压直流馈入的局部电网动态无功支撑能力下降,在逆变站近区严重交流故障冲击下可能暂态电压失稳。结合穗东换流站近区的暂态电压稳定问题,提出了优化直流...随着广东电网负荷中心柔性互联工程的实施,电网分区间的交流联系变弱,大容量常规高压直流馈入的局部电网动态无功支撑能力下降,在逆变站近区严重交流故障冲击下可能暂态电压失稳。结合穗东换流站近区的暂态电压稳定问题,提出了优化直流低压限流控制(voltage dependent current order limiter,VDCOL)参数并附加限制直流功率上升速率的优化控制策略,设计了基于逆变站交流母线电压特征的控制策略自适应切换逻辑,有效减少了直流恢复过程中的无功消耗,达到以最小的控制代价实现最优控制效果的目的;基于实际电网运行方式和直流控制保护系统,仿真验证了所设计方案能显著提升换流站近区的暂态电压稳定性,并在一定程度上可减少交流系统故障后的直流换相失败。相关技术方案已在多个直流工程投入实际应用。展开更多
The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular valu...The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.展开更多
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re...The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.展开更多
模块化多电平电压源换流器高压直流输电(modular multilevel converter high voltage direct current,MMC-HVDC)技术是一种新型的电压源换流器直流输电技术。计及交流系统与换流站交换功率的数学关系,应用图解法分析了交流电网强度对MMC...模块化多电平电压源换流器高压直流输电(modular multilevel converter high voltage direct current,MMC-HVDC)技术是一种新型的电压源换流器直流输电技术。计及交流系统与换流站交换功率的数学关系,应用图解法分析了交流电网强度对MMC-HVDC系统稳态特性的影响,同时分析了接入强、弱交流电网的直流系统在不同控制方式下设定值改变时的暂态特性。结果表明功率圆的大小及其相对位置可以直观地反映交流电网的强弱,以及控制方式对MMC-HVDC系统运行特性的影响。最后PSCAD电磁暂态仿真验证了上述结论的正确性。展开更多
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。
文摘Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller.
基金supported by the State Grid Corporation of China Headquarter technology project (52010118000K)
文摘For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.
文摘HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.
文摘The interaction mechanism between AC and DC systems in a hybrid AC-DC transmission grid is discussed with PSS/E software. Analysis shows that receiving-end AC faults may cause much more damage on the HVDC system operation than the sending-end AC faults in a multi-infeed HVDC system, and the damage severity depends on the power recovering rate of the HVDC systems. For HVDC systems with slow power recovering rate, the receiving-end AC faults may probably be a critical factor to constrain power transfer limits. Larger capacity of HVDC system means not only higher power transfer-limit of the parallel connected AC-DC transmission grid, but also more expensive stabilizing cost.
基金the National Natural Science Foundation of China(Grant No.51607158)the Key Scientific Technological Project in Henan Province(Grant No.192102210075)。
文摘HVDC auxiliary power control can significantly improve the transient stability of AC/DC power grid.An HVDC adaptive emergency power support method based on unbalanced power on line estimation is proposed in this paper.By establishing the extended state equation of the system,the on line dynamic estimation of unbalanced power of the system was realized.On this basis,power support was realized based on the principle of the ladder increment.The optimal DC was selected by the power support factor,and the emergency power support controller was installed on the DC.This emergency power support method can realize dynamic optimal power support with minimized control cost.The three infeed HVDC system was built on PSCAD.The simulation results show the effectiveness of the proposed method.
文摘Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.
文摘In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.
文摘Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.
文摘Huge amount of digital data of the Great East Japan Earthquake is provided by the highly-developed digital data technology. But the method and technique for analysis of these huge digital data are not developed sufficiently. This paper proposes a running spectrum technique for text data and analyzing changes of disaster phase during the disaster management cycle. Impact analysis of the nuclear power plant accidents have been performed by using Fukushima Minpo newspaper for its verification. The result shows the dynamic characteristics of the nuclear power plant accidents. As the time interval B becomes longer, the analysis data is used from wide range period along with the smoothing effect. When observing different time intervals B, fewer keywords have been ranked in the longer time intervals of B. The proposed technique is a powerful tool to effective and efficient disaster response and management. analyze effectively the huge amount of digital data for the
文摘随着广东电网负荷中心柔性互联工程的实施,电网分区间的交流联系变弱,大容量常规高压直流馈入的局部电网动态无功支撑能力下降,在逆变站近区严重交流故障冲击下可能暂态电压失稳。结合穗东换流站近区的暂态电压稳定问题,提出了优化直流低压限流控制(voltage dependent current order limiter,VDCOL)参数并附加限制直流功率上升速率的优化控制策略,设计了基于逆变站交流母线电压特征的控制策略自适应切换逻辑,有效减少了直流恢复过程中的无功消耗,达到以最小的控制代价实现最优控制效果的目的;基于实际电网运行方式和直流控制保护系统,仿真验证了所设计方案能显著提升换流站近区的暂态电压稳定性,并在一定程度上可减少交流系统故障后的直流换相失败。相关技术方案已在多个直流工程投入实际应用。
文摘The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.
文摘The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.
文摘模块化多电平电压源换流器高压直流输电(modular multilevel converter high voltage direct current,MMC-HVDC)技术是一种新型的电压源换流器直流输电技术。计及交流系统与换流站交换功率的数学关系,应用图解法分析了交流电网强度对MMC-HVDC系统稳态特性的影响,同时分析了接入强、弱交流电网的直流系统在不同控制方式下设定值改变时的暂态特性。结果表明功率圆的大小及其相对位置可以直观地反映交流电网的强弱,以及控制方式对MMC-HVDC系统运行特性的影响。最后PSCAD电磁暂态仿真验证了上述结论的正确性。