The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a c...The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods.展开更多
A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
DFT/BLYP method is used to theoretically investigate the electron transfer (ET) reactions between M (Li, Na, Mg)-C_6H_6 and M+-C_6H_6 complexes in the gas phase. The geometry optimization of the precursor complexes an...DFT/BLYP method is used to theoretically investigate the electron transfer (ET) reactions between M (Li, Na, Mg)-C_6H_6 and M+-C_6H_6 complexes in the gas phase. The geometry optimization of the precursor complexes and the transition state in the process of ET reaction was performed at 6-31G basis set level. The activation energy. the coupling matrix element and the rate constant of the ET reaction are calculated at semi-quantitative level.展开更多
Density functional theory was used at the B3LYP/6-311++G(d,p) level of theory to study the hydrates of 2NH3:H2SO4:nH2O for n = 0~4. Neutrals of the most stable clusters, when n = 0 and 1, spontaneously formed a...Density functional theory was used at the B3LYP/6-311++G(d,p) level of theory to study the hydrates of 2NH3:H2SO4:nH2O for n = 0~4. Neutrals of the most stable clusters, when n = 0 and 1, spontaneously formed and were determined to be hydrogen-bonded molecular complexes of monomeric species. Double ions (clusters containing a NH4+ cation and a HSO4- anion) or even ternary ions (clusters with two NH4+ cations and one SO42- anion) spontaneously formed in the most stable clusters of 2NH3:H2SO4:nH2O (n = 2, 3, 4). The energetics of binding and incremental association was also calculated. Double ions are not energetically favorable until 2NH3:H2SO4:2H2O because of the about equal free energies for forming the neutral (the most stable) and double ion (the second stable) isomers. The free energy of incremental association from free H2O and 2NH3:H2SO4:nH2O has a maximum at n = 2 at room temperature with ΔG ≈ –2 kcal/mol. The comparison of incremental association energies between 2NH3:H2SO4:nH2O, NH3:H2SO4:nH2O and H2SO4:nH2O clusters revealed that NH3 plays an important role in the atmospheric particle nucleation.展开更多
This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simu...This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.展开更多
The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determi...The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determined to be~0.59 eV in height.It is found that the electron transfer from the copper substrate to H_(2) plays a key role in the activation and breaking of the H–H bond,and the formation of the Cu–H bonds.Two stationary states are identified at around the critical height of bond breaking,corresponding to the molecular and the dissociative states,respectively.Using the transfer matrix method,we also investigate the role of quantum tunneling in the dissociation process along the minimum energy pathway(MEP),which is found to be significant at or below room temperature.At a given temperature,the tunneling contributions due to the translational and the vibrational motions of H_(2) are quantified for the dissociation process.Within a wide range of temperature,the effects of quantum tunneling on the effective barriers of dissociation and the rate constants are observed.The deduced energetic parameters associated with the thermal equilibrium and non-equilibrium(molecular beam)conditions are comparable to experimental data.In the low-temperature region,the crossover from classical to quantum regime is identified.展开更多
The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has...The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.展开更多
In order to develop a sensor for the detection of toxic H_2S molecule,the interactions of C–NT and CSi–NT with H_2S molecule were investigated by density functional theory calculations. The effects of F functionaliz...In order to develop a sensor for the detection of toxic H_2S molecule,the interactions of C–NT and CSi–NT with H_2S molecule were investigated by density functional theory calculations. The effects of F functionalization and water on the adsorption of H_2S gas on C–NT and CSi–NT surfaces were investigated. The studied nanotubes can interact with the H_2S molecule effectively and so adsorptions of H_2S on studied nanotubes are exothermic and possible from the energetic viewpoint. Replacing the C atoms of C–NT with Si atoms may be a good strategy for improving the sensitivity of C–NT towards H_2S. F functionalization and water cause an increase and decrease in the absolute adsorption energy(Ead) values of H_2S on the studied nanotubes,respectively. There are good linearity dependencies between Ead and orbital energy values of studied nanotubes. The Ead and orbital energy values of studied nanotubes can be considered as important parameters to propose suitable nanotubes with increased potential of H_2S adsorption.展开更多
基金support of the National Key R&D Program of China(No.2022YFC2803903)the Key R&D Program of Zhejiang Province(No.2021C03013)the Zhejiang Provincial Natural Science Foundation of China(No.LZ20F020003).
文摘The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods.
文摘A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
基金the Natural Science Foundation of Shandong Pro\incethe National Kc' Laboratory' Foundation of Crustal Material the Natio
文摘DFT/BLYP method is used to theoretically investigate the electron transfer (ET) reactions between M (Li, Na, Mg)-C_6H_6 and M+-C_6H_6 complexes in the gas phase. The geometry optimization of the precursor complexes and the transition state in the process of ET reaction was performed at 6-31G basis set level. The activation energy. the coupling matrix element and the rate constant of the ET reaction are calculated at semi-quantitative level.
基金supported by the National Natural Science Foundation of China (20528706)the China Postdoctoral Science Foundation (20090450385)
文摘Density functional theory was used at the B3LYP/6-311++G(d,p) level of theory to study the hydrates of 2NH3:H2SO4:nH2O for n = 0~4. Neutrals of the most stable clusters, when n = 0 and 1, spontaneously formed and were determined to be hydrogen-bonded molecular complexes of monomeric species. Double ions (clusters containing a NH4+ cation and a HSO4- anion) or even ternary ions (clusters with two NH4+ cations and one SO42- anion) spontaneously formed in the most stable clusters of 2NH3:H2SO4:nH2O (n = 2, 3, 4). The energetics of binding and incremental association was also calculated. Double ions are not energetically favorable until 2NH3:H2SO4:2H2O because of the about equal free energies for forming the neutral (the most stable) and double ion (the second stable) isomers. The free energy of incremental association from free H2O and 2NH3:H2SO4:nH2O has a maximum at n = 2 at room temperature with ΔG ≈ –2 kcal/mol. The comparison of incremental association energies between 2NH3:H2SO4:nH2O, NH3:H2SO4:nH2O and H2SO4:nH2O clusters revealed that NH3 plays an important role in the atmospheric particle nucleation.
文摘This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474285 and 12074382)。
文摘The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determined to be~0.59 eV in height.It is found that the electron transfer from the copper substrate to H_(2) plays a key role in the activation and breaking of the H–H bond,and the formation of the Cu–H bonds.Two stationary states are identified at around the critical height of bond breaking,corresponding to the molecular and the dissociative states,respectively.Using the transfer matrix method,we also investigate the role of quantum tunneling in the dissociation process along the minimum energy pathway(MEP),which is found to be significant at or below room temperature.At a given temperature,the tunneling contributions due to the translational and the vibrational motions of H_(2) are quantified for the dissociation process.Within a wide range of temperature,the effects of quantum tunneling on the effective barriers of dissociation and the rate constants are observed.The deduced energetic parameters associated with the thermal equilibrium and non-equilibrium(molecular beam)conditions are comparable to experimental data.In the low-temperature region,the crossover from classical to quantum regime is identified.
基金the National Natural Science Foundation of China (20673019, 20773024)the Natural Science Foundation of Fujian Province (U0650012)the New Century Excellent Talents in University and the Initial Funding for Talents of Fuzhou University (2008-XQ-07, XRC-0732)
文摘The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.
文摘In order to develop a sensor for the detection of toxic H_2S molecule,the interactions of C–NT and CSi–NT with H_2S molecule were investigated by density functional theory calculations. The effects of F functionalization and water on the adsorption of H_2S gas on C–NT and CSi–NT surfaces were investigated. The studied nanotubes can interact with the H_2S molecule effectively and so adsorptions of H_2S on studied nanotubes are exothermic and possible from the energetic viewpoint. Replacing the C atoms of C–NT with Si atoms may be a good strategy for improving the sensitivity of C–NT towards H_2S. F functionalization and water cause an increase and decrease in the absolute adsorption energy(Ead) values of H_2S on the studied nanotubes,respectively. There are good linearity dependencies between Ead and orbital energy values of studied nanotubes. The Ead and orbital energy values of studied nanotubes can be considered as important parameters to propose suitable nanotubes with increased potential of H_2S adsorption.