(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]是新型含能钙钛矿化合物的典型代表,需明确其热分解行为、热分解机制及感度特性,以推动其在配方中的应用。以差示扫描量热-热重分析方法实现了分解放热量、分解温度等参数的获取;以动力学模拟计算...(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]是新型含能钙钛矿化合物的典型代表,需明确其热分解行为、热分解机制及感度特性,以推动其在配方中的应用。以差示扫描量热-热重分析方法实现了分解放热量、分解温度等参数的获取;以动力学模拟计算解析了相关分解机理;以同步热分析-红外-质谱联用技术结合原位红外技术探索了(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]的分解产物及分解历程;以国军标法获得了热感度、摩擦感度与撞击感度参数。结果表明:在10℃·min^(-1)的升温速率下,(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]分解放热量为4227 J·g^(-1),分解温度则达到345℃,高于黑索今(RDX)、奥克托今(HMX)、六硝基六氮杂异伍兹烷(CL-20)等多数现役含能材料,显示了优异的热稳定性;分解产物研究表明其立方笼状骨架有效稳定了内部结合的有机物分子,使其热稳定性较高。此外,(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]在100℃下加热48 h的放气量约0.04 m L·g^(-1),撞击感度与机械感度分别为32%和80%,优于RDX和HMX。展开更多
Structural properties of the organic-inorganic hybrid(C_(2)H_(5)NH_(3))_(2)CuCl_(4) have been investigated by means of x-ray powder diffraction and Rietveld analysis. A structural phase transition from Pbca to Aba2 oc...Structural properties of the organic-inorganic hybrid(C_(2)H_(5)NH_(3))_(2)CuCl_(4) have been investigated by means of x-ray powder diffraction and Rietveld analysis. A structural phase transition from Pbca to Aba2 occurs at T_(4)= 240 K, which results in a paraelectric–ferroelectric phase transition. The release of the Jahn–Teller distortion with increasing temperature toward T_(4) is revealed by the structural analysis.展开更多
Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(...Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(C_(2)O_(4))_(3)]^(3-)into NiFe LDHs by intercalation engineering to promote surface reconstruction achieves an advanced oxygen evolution reaction(OER)activity.In view of the weak electronegativity of Cr^(3+) in[Cr(C_(2)O_(4))_(3)]^(3-),the intercalation of[Cr(C_(2)O_(4))_(3)]^(3-)is expected to result in an electron-rich structure of Fe sites in NiFe LDHs,and higher valence state of Ni can be formed with the charge transfer between Fe and Ni.The optimized electronic structure of NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs with more active Ni^(3+) species and the expedited dynamic generation of Ni^(3+) (Fe)OOH phase during the OER process contributed to its excellent catalytic property,revealed by in situ X-ray absorption spectroscopy,Raman spectroscopy,and quasi-in situ X-ray photoelectron spectroscopy.With the modulated electronic structure of metal sites,NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs exhibited promoted OER property with a lower overpotential of 236 mV at the current density of 10 mA cm^(-2).This work illustrates the intercalation of conjugated anion to dynamically construct desired Ni^(3+) sites with the optimal electronic environment for improved OER electrocatalysis.展开更多
C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and p...C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and photolysis ability were tested to characterize its photocatalytic activity.Compared with the single-shelled C_(3)N_(4)and C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,double-shelled W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres possessed larger surface area and fast charge separation efficiency,exhibiting about 8.9 times and 4.0 times higher H_(2)evolution than those of C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,respectively.The photocatalytic mechanism of the W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were carefully investigated according to the results of morphology design and photoelectric performance.A Z scheme mechanism based on the construction of heterojunctions was proposed to explain the improvement of photocatalytic performance.This new charge transfer mechanism appears to greatly inhibit the recombination of electrons/holes during the charge transfer process,while maintaining its strong hydrogen reduction ability,resulting in a higher photocatalytic performance.展开更多
以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅...以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅烧条件对g-C_(3)N_(4)的结构属性和催化性能有显著影响。两步焙烧和1℃·min^(-1)最佳升温速率制备的样品(CN-T-1)表现出显著提高的光催化产H_(2)O_(2)效率(3177.0μmol·g^(-1)·h^(-1)),为一步焙烧和1℃·min^(-1)升温速率制备的样品(CN-O-1)(858.6μmol·g^(-1)·h^(-1))的3.7倍,高于文献报导的纯g-C_(3)N_(4)产H_(2)O_(2)效率。CN-T-1在5次循环使用中H_(2)O_(2)产率先略有下降,后基本保持不变,表现出良好的稳定性。相较于CN-O-1,CN-T-1增强的催化性能归因于更大的比表面积、增强的结晶性、更高氧吸附能力和光生载流子分离效率、更长的载流子寿命,以及超薄片层使其具有更大的带隙(3.07 e V,比CN-O-1大+0.26 e V)和更正的价带位置。·O_(2)^(-)自由基被证实为主要的活性物种。CN-T-1光催化产H_(2)O_(2)被证实为两步单电子ORR路径(O_(2)+e^(-)→·O_(2)^(-)→H_(2)O_(2))。展开更多
Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinet...Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.展开更多
文摘(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]是新型含能钙钛矿化合物的典型代表,需明确其热分解行为、热分解机制及感度特性,以推动其在配方中的应用。以差示扫描量热-热重分析方法实现了分解放热量、分解温度等参数的获取;以动力学模拟计算解析了相关分解机理;以同步热分析-红外-质谱联用技术结合原位红外技术探索了(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]的分解产物及分解历程;以国军标法获得了热感度、摩擦感度与撞击感度参数。结果表明:在10℃·min^(-1)的升温速率下,(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]分解放热量为4227 J·g^(-1),分解温度则达到345℃,高于黑索今(RDX)、奥克托今(HMX)、六硝基六氮杂异伍兹烷(CL-20)等多数现役含能材料,显示了优异的热稳定性;分解产物研究表明其立方笼状骨架有效稳定了内部结合的有机物分子,使其热稳定性较高。此外,(C_(6)H_(14)N_(2))[Na(ClO_(4))_(3)]在100℃下加热48 h的放气量约0.04 m L·g^(-1),撞击感度与机械感度分别为32%和80%,优于RDX和HMX。
基金supported by the National Natural Science Foundation of China (Grant No. 51925605)Fujian Institute of Innovation,Chinese Academy of Sciences(Grant No. FJCXY18040303)the Youth Innovation Promotion of the Chinese Academy of Sciences (Grant No. 2013004)。
文摘Structural properties of the organic-inorganic hybrid(C_(2)H_(5)NH_(3))_(2)CuCl_(4) have been investigated by means of x-ray powder diffraction and Rietveld analysis. A structural phase transition from Pbca to Aba2 occurs at T_(4)= 240 K, which results in a paraelectric–ferroelectric phase transition. The release of the Jahn–Teller distortion with increasing temperature toward T_(4) is revealed by the structural analysis.
基金support from the National Natural Science Foundation of China(51402100,21905088,21573066 and U19A2017)the Provincial Natural Science Foundation of Hunan(2020JJ5044,2022JJ10006)。
文摘Rationally manipulating surface reconstruction of catalysts for water oxidation,inducing formation and dynamic accumulation of catalytically active centers still face numerous challenges.Herein,the introduction of[Cr(C_(2)O_(4))_(3)]^(3-)into NiFe LDHs by intercalation engineering to promote surface reconstruction achieves an advanced oxygen evolution reaction(OER)activity.In view of the weak electronegativity of Cr^(3+) in[Cr(C_(2)O_(4))_(3)]^(3-),the intercalation of[Cr(C_(2)O_(4))_(3)]^(3-)is expected to result in an electron-rich structure of Fe sites in NiFe LDHs,and higher valence state of Ni can be formed with the charge transfer between Fe and Ni.The optimized electronic structure of NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs with more active Ni^(3+) species and the expedited dynamic generation of Ni^(3+) (Fe)OOH phase during the OER process contributed to its excellent catalytic property,revealed by in situ X-ray absorption spectroscopy,Raman spectroscopy,and quasi-in situ X-ray photoelectron spectroscopy.With the modulated electronic structure of metal sites,NiFe-[Cr(C_(2)O_(4))_(3)]^(3-)-LDHs exhibited promoted OER property with a lower overpotential of 236 mV at the current density of 10 mA cm^(-2).This work illustrates the intercalation of conjugated anion to dynamically construct desired Ni^(3+) sites with the optimal electronic environment for improved OER electrocatalysis.
基金Supported by the National Natural Science Foundation of China(Nos.91963207 and 12075174)。
文摘C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and photolysis ability were tested to characterize its photocatalytic activity.Compared with the single-shelled C_(3)N_(4)and C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,double-shelled W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres possessed larger surface area and fast charge separation efficiency,exhibiting about 8.9 times and 4.0 times higher H_(2)evolution than those of C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,respectively.The photocatalytic mechanism of the W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were carefully investigated according to the results of morphology design and photoelectric performance.A Z scheme mechanism based on the construction of heterojunctions was proposed to explain the improvement of photocatalytic performance.This new charge transfer mechanism appears to greatly inhibit the recombination of electrons/holes during the charge transfer process,while maintaining its strong hydrogen reduction ability,resulting in a higher photocatalytic performance.
基金supported by the Natural Science Foundation of China(51572074)Open Fund of Key Laboratory of Drug Analysis and Anti-drug Technology of the Ministry of Public Security(YNPL-B2021002)。
文摘以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅烧条件对g-C_(3)N_(4)的结构属性和催化性能有显著影响。两步焙烧和1℃·min^(-1)最佳升温速率制备的样品(CN-T-1)表现出显著提高的光催化产H_(2)O_(2)效率(3177.0μmol·g^(-1)·h^(-1)),为一步焙烧和1℃·min^(-1)升温速率制备的样品(CN-O-1)(858.6μmol·g^(-1)·h^(-1))的3.7倍,高于文献报导的纯g-C_(3)N_(4)产H_(2)O_(2)效率。CN-T-1在5次循环使用中H_(2)O_(2)产率先略有下降,后基本保持不变,表现出良好的稳定性。相较于CN-O-1,CN-T-1增强的催化性能归因于更大的比表面积、增强的结晶性、更高氧吸附能力和光生载流子分离效率、更长的载流子寿命,以及超薄片层使其具有更大的带隙(3.07 e V,比CN-O-1大+0.26 e V)和更正的价带位置。·O_(2)^(-)自由基被证实为主要的活性物种。CN-T-1光催化产H_(2)O_(2)被证实为两步单电子ORR路径(O_(2)+e^(-)→·O_(2)^(-)→H_(2)O_(2))。
基金supported by the funding from the National Natural Science Foundation of China(grant nos.51902187,52072224,and 51732007)the Natural Science Foundation of Shandong Province(ZR2018BEM010)+3 种基金the Science Fund for Distinguished Young Scholars of Shandong Province(ZR2019JQ16)the Fundamental Research Funds of Shandong UniversityYoung Elite Scientist Sponsorship Program by CAST(YESS)the support from Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
文摘Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.
基金supported by Shanghai Pujiang Program(21PJ1400400)Shanghai Municipal Science and Technology Commission(22511103900)+1 种基金the Fundamental Research Funds for the Central Universities(2232023A-02)the National Natural Science Foundation of China(22173017).
基金supported by the Outstanding Youth Fund of Heilongjiang Province (JQ 2020B002)Guangxi Science and Technology Base and Talent Special Project (AD21075001)the Reform and Development Fund Project of Local University supported by the Central Government。