Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The resu...Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.展开更多
The effect of Cl- ion on the anodic iron dissolution in H2SO4 solutions containing H2S has been studied by using electrochemical polarization curve measurements. The competitive adsorption for Cl- and HS- ions at an a...The effect of Cl- ion on the anodic iron dissolution in H2SO4 solutions containing H2S has been studied by using electrochemical polarization curve measurements. The competitive adsorption for Cl- and HS- ions at an anodic potential has been calculated using the CNDO/2method. The results show that a ceftain concentration of the Cl- ion can be adsorbed steadily and inhibit the anodic reaction of iron catalyzed by HS-. However, when the Cl- ion reaches the saturation adsorption, it begins to promote the anodic reaction of iron due tO the increased negative charge of iron atoms.展开更多
With the aid of hydrogen permeating devices, the hydrogen permeation behaviors of X52 pipeline steel in NACE A solution with saturated H2S/CO2 were studied under the conditions of different ambient temperatures and pH...With the aid of hydrogen permeating devices, the hydrogen permeation behaviors of X52 pipeline steel in NACE A solution with saturated H2S/CO2 were studied under the conditions of different ambient temperatures and pH values, and the hydrogen permeation behaviors of X52 pipeline steel in weld seam zone were comparatively studied. The experimental results show that the hydrogen permeation coefficient value is directly proportional to the time required for reaching the saturation anode current and inversely proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the corrosion scales; the temperature is directly proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the temperature and corrosion scales, heat-affected zone and matrix zone in NACE A solution with saturated H2S/CO2 at normal temperature. The hydrogen permeation coefficient in weld seam zone is larger than that in heat-affected zone which is further larger than that in matrix zone.展开更多
In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and ...In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and the molecular structures were fully characterized.The excellent anticorrosion of the target AIMs for copper surface in H_(2)SO_(4) solution was demonstrated by the electrochemistry analysis,which was more superior over those of the reference AIMs.The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than -40 kJ·mol^(-1),suggesting an intensified chemical adsorption on metal surface.The molecular modeling and molecular dynamic computation of the studied AIMs were performed,demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones.The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy,atomic force microscopy,Fourier transform infrared spectroscopy,attenuated total reflection infrared spectroscopy,Raman and X-ray diffraction.展开更多
文摘Sulfide stress corrosion cracking (SSCC) behaviour of UNS G11180 steel in 5% NaCl solution with H2S was studied by slow strain rate tensile test (SSRT), SEM and electrochemical hydro gen permeation technique. The results reveal different cracking mechanism and H permeation current (IH) through UNS G11180 steel plate in different concentration of H2S solution. The susceptibility to SSCC of UNS G11180 Steel in 5% NaCl solution with H2S was evaluated by the permeation current(IH, μA), which depends on the concentration (c×10-6) of H2S by the equation:IH = 8.525 ×c0.7249. lt is proved that the electrochemical H permeation method is a practical way to assess the susceptibility to SSCC.
文摘The effect of Cl- ion on the anodic iron dissolution in H2SO4 solutions containing H2S has been studied by using electrochemical polarization curve measurements. The competitive adsorption for Cl- and HS- ions at an anodic potential has been calculated using the CNDO/2method. The results show that a ceftain concentration of the Cl- ion can be adsorbed steadily and inhibit the anodic reaction of iron catalyzed by HS-. However, when the Cl- ion reaches the saturation adsorption, it begins to promote the anodic reaction of iron due tO the increased negative charge of iron atoms.
基金Funded by the Program for National Science Foundation for Distinguished Young Scholars (No.51125019)the National Natural Science Foundation of China (No.50904050)+2 种基金the Basic Projects of Sichuan Province of China(No.2011JY0106)Postdoctoral Science Foundation(No.20110490810)the Special Fund of China's Central Government for the Development of Local Colleges and Universities-the Project of National First-level Discipline in Oil and Gas Engineering
文摘With the aid of hydrogen permeating devices, the hydrogen permeation behaviors of X52 pipeline steel in NACE A solution with saturated H2S/CO2 were studied under the conditions of different ambient temperatures and pH values, and the hydrogen permeation behaviors of X52 pipeline steel in weld seam zone were comparatively studied. The experimental results show that the hydrogen permeation coefficient value is directly proportional to the time required for reaching the saturation anode current and inversely proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the corrosion scales; the temperature is directly proportional to the saturation anode current, and the hydrogen permeation coefficient is influenced by the temperature and corrosion scales, heat-affected zone and matrix zone in NACE A solution with saturated H2S/CO2 at normal temperature. The hydrogen permeation coefficient in weld seam zone is larger than that in heat-affected zone which is further larger than that in matrix zone.
基金the National Natural Science Foundation of China (21376282,21676035,21878029)Chongqing Science and Technology Commission (cstc2018jcyjAX0668)+2 种基金Shandong Province Natural Science Foundation (ZR2020QB18)China Postdoctoral Science Foundation (22012 T50762&2011 M501388)Graduate Student Research Innovation Project,Chongqing University (CYB18046)。
文摘In this study,the benign target double terpyridine parts based amphiphilic ionic molecules(AIMs 1,2)and the reference single terpyridine segment included AIMs(AIMs 3,4)were synthesized through a multi-step method,and the molecular structures were fully characterized.The excellent anticorrosion of the target AIMs for copper surface in H_(2)SO_(4) solution was demonstrated by the electrochemistry analysis,which was more superior over those of the reference AIMs.The standard adsorption free energy changes of the target AIMs calculated by the adsorption isotherms were lower than -40 kJ·mol^(-1),suggesting an intensified chemical adsorption on metal surface.The molecular modeling and molecular dynamic computation of the studied AIMs were performed,demonstrating that the target AIMs exhibited lower highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps and greater adsorption energies than the reference ones.The chemical adsorption of the AIMs on metal surface was revealed by various spectroscopic methods including scanning electron microscopy,atomic force microscopy,Fourier transform infrared spectroscopy,attenuated total reflection infrared spectroscopy,Raman and X-ray diffraction.