The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orient...The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.展开更多
Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of ...Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.展开更多
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ...The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts.展开更多
Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, de...Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.展开更多
Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources.The wind turbine is an essential system used to change kinetic energy into electrical e...Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources.The wind turbine is an essential system used to change kinetic energy into electrical energy.Wind turbine blades,in particular,require a competitive condition inspection approach as it is a significant component of the wind turbine system that costs around 20-25 percent of the total turbine cost.The main objective of this study is to differentiate between various blade faults which affect the wind turbine blade under operating conditions using a machine learning approach through histogram features.In this study,blade bend,hub-blade loose connection,blade erosion,pitch angle twist,and blade cracks were simulated on the blade.This problem is formulated as a machine learning problem which consists of three phases,namely feature extraction,feature selection and feature classification.Histogram features are extracted from vibration signals and feature selection was carried out using the J48 decision tree algorithm.Feature classification was performed using 15 tree classifiers.The results of the machine learning classifiers were compared with respect to their accuracy percentage and a better model is suggested for real-time monitoring of a wind turbine blade.展开更多
In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)...In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems.展开更多
Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and com...Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and commercial transactions due to its various advantages,including noninvasiveness,user-friendliness,and social and legal acceptability.According to the literature,extensive research has been conducted on signature verification systems in a variety of languages,including English,Hindi,Bangla,and Chinese.However,the Arabic Offline Signature Verification(OSV)system is still a challenging issue that has not been investigated as much by researchers due to the Arabic script being distinguished by changing letter shapes,diacritics,ligatures,and overlapping,making verification more difficult.Recently,signature verification systems have shown promising results for recognizing signatures that are genuine or forgeries;however,performance on skilled forgery detection is still unsatisfactory.Most existing methods require many learning samples to improve verification accuracy,which is a major drawback because the number of available signature samples is often limited in the practical application of signature verification systems.This study addresses these issues by presenting an OSV system based on multifeature fusion and discriminant feature selection using a genetic algorithm(GA).In contrast to existing methods,which use multiclass learning approaches,this study uses a oneclass learning strategy to address imbalanced signature data in the practical application of a signature verification system.The proposed approach is tested on three signature databases(SID)-Arabic handwriting signatures,CEDAR(Center of Excellence for Document Analysis and Recognition),and UTSIG(University of Tehran Persian Signature),and experimental results show that the proposed system outperforms existing systems in terms of reducing the False Acceptance Rate(FAR),False Rejection Rate(FRR),and Equal Error Rate(ERR).The proposed system achieved 5%improvement.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabete...As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.展开更多
One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious...One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious files.In this study,an exclusive set of 29 features was collected from trusted implementations,this set was used as a baseline to analyze the presented work in this research.A Decision Tree(DT)and Neural Network Multi-Layer Perceptron(NN-MLPC)algorithms were utilized during this work.Both algorithms were chosen after testing a few diverse procedures.This work implements a method of subgrouping features to answer questions such as,which feature has a positive impact on accuracy when added?Is it possible to determine a reliable feature set to distinguish a malicious PE file from a benign one?when combining features,would it have any effect on malware detection accuracy in a PE file?Results obtained using the proposed method were improved and carried few observations.Generally,the obtained results had practical and numerical parts,for the practical part,the number of features and which features included are the main factors impacting the calculated accuracy,also,the combination of features is as crucial in these calculations.Numerical results included,finding accuracies with enhanced values,for example,NN_MLPC attained 0.979 and 0.98;for DT an accuracy of 0.9825 and 0.986 was attained.展开更多
In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocatio...In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.展开更多
This paper proposes a night-time vehicle detection method using variable Haar-like feature.The specific features of front vehicle cannot be obtained in road image at night-time because of light reflection and ambient ...This paper proposes a night-time vehicle detection method using variable Haar-like feature.The specific features of front vehicle cannot be obtained in road image at night-time because of light reflection and ambient light,and it is also difficult to define optimal brightness and color of rear lamp according to road conditions.In comparison,the difference of vehicle region and road surface is more robust for road illumination environment.Thus,we select the candidates of vehicles by analysing the difference,and verify the candidates using those brightness and complexity to detect vehicle correctly.The feature of brightness difference is detected using variable horizontal Haar-like mask according to vehicle size in the location of image.And the region occurring rapid change is selected as the candidate.The proposed method is evaluated by testing on the various real road conditions.展开更多
In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified fro...In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified from the point of view of introducing Jensen-Shannon divergence to measure the importance of covariates. The idea of the method is to calculate the Jensen-Shannon divergence between the conditional probability distribution of the covariates on a given response variable and the unconditional probability distribution of the covariates, and then use the probabilities of the response variables as weights to calculate the weighted Jensen-Shannon divergence, where a larger weighted Jensen-Shannon divergence means that the covariates are more important. Additionally, we also investigated an adapted version of the method, which is to measure the relationship between the covariates and the response variable using the weighted Jensen-Shannon divergence adjusted by the logarithmic factor of the number of categories when the number of categories in each covariate varies. Then, through both theoretical and simulation experiments, it was demonstrated that the proposed methods have sure screening and ranking consistency properties. Finally, the results from simulation and real-dataset experiments show that in feature screening, the proposed methods investigated are robust in performance and faster in computational speed compared with an existing method.展开更多
Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained ...Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.展开更多
Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognitio...Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.展开更多
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim...Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively.展开更多
文摘The number of blogs and other forms of opinionated online content has increased dramatically in recent years.Many fields,including academia and national security,place an emphasis on automated political article orientation detection.Political articles(especially in the Arab world)are different from other articles due to their subjectivity,in which the author’s beliefs and political affiliation might have a significant influence on a political article.With categories representing the main political ideologies,this problem may be thought of as a subset of the text categorization(classification).In general,the performance of machine learning models for text classification is sensitive to hyperparameter settings.Furthermore,the feature vector used to represent a document must capture,to some extent,the complex semantics of natural language.To this end,this paper presents an intelligent system to detect political Arabic article orientation that adapts the categorical boosting(CatBoost)method combined with a multi-level feature concept.Extracting features at multiple levels can enhance the model’s ability to discriminate between different classes or patterns.Each level may capture different aspects of the input data,contributing to a more comprehensive representation.CatBoost,a robust and efficient gradient-boosting algorithm,is utilized to effectively learn and predict the complex relationships between these features and the political orientation labels associated with the articles.A dataset of political Arabic texts collected from diverse sources,including postings and articles,is used to assess the suggested technique.Conservative,reform,and revolutionary are the three subcategories of these opinions.The results of this study demonstrate that compared to other frequently used machine learning models for text classification,the CatBoost method using multi-level features performs better with an accuracy of 98.14%.
文摘Obstructive Sleep Apnea(OSA)is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation.The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea(SA)activity.In the proposed method,the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted.These features are applied to the Classification and Regression Tree(CART)-Particle Swarm Optimization(PSO)classifier which classifies the signal into normal breathing signal and sleep apnea signal.The proposed method is validated to measure the performance metrics like sensitivity,specificity,accuracy and F1 score by applying time domain and frequency domain features separately.Additionally,the performance of the CART-PSO(CPSO)classification algorithm is evaluated through comparing its measures with existing classification algorithms.Concurrently,the effect of the PSO algorithm in the classifier is validated by varying the parameters of PSO.
基金Acknowledgements This paper was supported by the coUabomtive Research Project SEV under Cant No. 01100474 between Beijing University of Posts and Telecorrrcnications and France Telecom R&D Beijing the National Natural Science Foundation of China under Cant No. 90920001 the Caduate Innovation Fund of SICE, BUPT, 2011.
文摘The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts.
文摘Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.
文摘Wind energy is considered as a alternative renewable energy source due to its low operating cost when compared with other sources.The wind turbine is an essential system used to change kinetic energy into electrical energy.Wind turbine blades,in particular,require a competitive condition inspection approach as it is a significant component of the wind turbine system that costs around 20-25 percent of the total turbine cost.The main objective of this study is to differentiate between various blade faults which affect the wind turbine blade under operating conditions using a machine learning approach through histogram features.In this study,blade bend,hub-blade loose connection,blade erosion,pitch angle twist,and blade cracks were simulated on the blade.This problem is formulated as a machine learning problem which consists of three phases,namely feature extraction,feature selection and feature classification.Histogram features are extracted from vibration signals and feature selection was carried out using the J48 decision tree algorithm.Feature classification was performed using 15 tree classifiers.The results of the machine learning classifiers were compared with respect to their accuracy percentage and a better model is suggested for real-time monitoring of a wind turbine blade.
基金National Natural Science Foundation of China,Grant/Award Number:61972261Basic Research Foundations of Shenzhen,Grant/Award Numbers:JCYJ20210324093609026,JCYJ20200813091134001。
文摘In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems.
文摘Signature verification is regarded as the most beneficial behavioral characteristic-based biometric feature in security and fraud protection.It is also a popular biometric authentication technology in forensic and commercial transactions due to its various advantages,including noninvasiveness,user-friendliness,and social and legal acceptability.According to the literature,extensive research has been conducted on signature verification systems in a variety of languages,including English,Hindi,Bangla,and Chinese.However,the Arabic Offline Signature Verification(OSV)system is still a challenging issue that has not been investigated as much by researchers due to the Arabic script being distinguished by changing letter shapes,diacritics,ligatures,and overlapping,making verification more difficult.Recently,signature verification systems have shown promising results for recognizing signatures that are genuine or forgeries;however,performance on skilled forgery detection is still unsatisfactory.Most existing methods require many learning samples to improve verification accuracy,which is a major drawback because the number of available signature samples is often limited in the practical application of signature verification systems.This study addresses these issues by presenting an OSV system based on multifeature fusion and discriminant feature selection using a genetic algorithm(GA).In contrast to existing methods,which use multiclass learning approaches,this study uses a oneclass learning strategy to address imbalanced signature data in the practical application of a signature verification system.The proposed approach is tested on three signature databases(SID)-Arabic handwriting signatures,CEDAR(Center of Excellence for Document Analysis and Recognition),and UTSIG(University of Tehran Persian Signature),and experimental results show that the proposed system outperforms existing systems in terms of reducing the False Acceptance Rate(FAR),False Rejection Rate(FRR),and Equal Error Rate(ERR).The proposed system achieved 5%improvement.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
文摘As per World Health Organization report which was released in the year of 2019,Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world.Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it.Among the diabetics,it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.To avoid this situation,we propose a new fuzzy logic based neural classifier for early detection of diabetes.A set of new neuro-fuzzy rules is introduced with time constraints that are applied for thefirst level classification.These levels are further refined by using the Fuzzy Cognitive Maps(FCM)with time intervals for making thefinal decision over the classification process.The main objective of this proposed model is to detect the diabetes level based on the time.Also,the set of neuro-fuzzy rules are used for selecting the most contributing values over the decision-making process in diabetes prediction.The proposed model proved its efficiency in performance after experiments conducted not only from the repository but also by using the standard diabetic detection models that are available in the market.
文摘One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious files.In this study,an exclusive set of 29 features was collected from trusted implementations,this set was used as a baseline to analyze the presented work in this research.A Decision Tree(DT)and Neural Network Multi-Layer Perceptron(NN-MLPC)algorithms were utilized during this work.Both algorithms were chosen after testing a few diverse procedures.This work implements a method of subgrouping features to answer questions such as,which feature has a positive impact on accuracy when added?Is it possible to determine a reliable feature set to distinguish a malicious PE file from a benign one?when combining features,would it have any effect on malware detection accuracy in a PE file?Results obtained using the proposed method were improved and carried few observations.Generally,the obtained results had practical and numerical parts,for the practical part,the number of features and which features included are the main factors impacting the calculated accuracy,also,the combination of features is as crucial in these calculations.Numerical results included,finding accuracies with enhanced values,for example,NN_MLPC attained 0.979 and 0.98;for DT an accuracy of 0.9825 and 0.986 was attained.
文摘In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)by the Brain Korea 21 Project in2011
文摘This paper proposes a night-time vehicle detection method using variable Haar-like feature.The specific features of front vehicle cannot be obtained in road image at night-time because of light reflection and ambient light,and it is also difficult to define optimal brightness and color of rear lamp according to road conditions.In comparison,the difference of vehicle region and road surface is more robust for road illumination environment.Thus,we select the candidates of vehicles by analysing the difference,and verify the candidates using those brightness and complexity to detect vehicle correctly.The feature of brightness difference is detected using variable horizontal Haar-like mask according to vehicle size in the location of image.And the region occurring rapid change is selected as the candidate.The proposed method is evaluated by testing on the various real road conditions.
文摘In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified from the point of view of introducing Jensen-Shannon divergence to measure the importance of covariates. The idea of the method is to calculate the Jensen-Shannon divergence between the conditional probability distribution of the covariates on a given response variable and the unconditional probability distribution of the covariates, and then use the probabilities of the response variables as weights to calculate the weighted Jensen-Shannon divergence, where a larger weighted Jensen-Shannon divergence means that the covariates are more important. Additionally, we also investigated an adapted version of the method, which is to measure the relationship between the covariates and the response variable using the weighted Jensen-Shannon divergence adjusted by the logarithmic factor of the number of categories when the number of categories in each covariate varies. Then, through both theoretical and simulation experiments, it was demonstrated that the proposed methods have sure screening and ranking consistency properties. Finally, the results from simulation and real-dataset experiments show that in feature screening, the proposed methods investigated are robust in performance and faster in computational speed compared with an existing method.
文摘Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance.
文摘Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.
基金the National Natural Science of China (50675167)a Foundation for the Author of National Excellent Doctoral Dissertation of China(200535)
文摘Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively.