Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene,and thus essential for the graphene-based devices.Here we de...Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene,and thus essential for the graphene-based devices.Here we demonstrate a successful solution for the intercalation of hafnium oxide into the interface between full-layer graphene and Ir(111)substrate.We first intercalate hafnium atoms beneath the epitaxial graphene.The intercalation of the hafnium atoms leads to the variation of the graphene moire superstructure periodicity,which is characterized by low-energy electron diffraction(LEED)and lowtemperature scanning tunneling microscopy(LT-STM).Subsequently,we introduce oxygen into the interface,resulting in oxidization of the intercalated hafnium.STM and Raman's characterizations reveal that the intercalated hafnium oxide layer could effectively decouple the graphene from the metallic substrate,while the graphene maintains its high quality.Our work suggests a high-k dielectric layer has been successfully intercalated between high-quality epitaxial graphene and metal substrate,providing a platform for applications of large-scale,high-quality graphene for electronic devices.展开更多
A novel process for the separation of hafnium from thiocyanic acid medium using the mixture of diisobutyl ketone(DIBK) and tributyl phosphate(TBP) as the extractant was developed.This extraction process was invest...A novel process for the separation of hafnium from thiocyanic acid medium using the mixture of diisobutyl ketone(DIBK) and tributyl phosphate(TBP) as the extractant was developed.This extraction process was investigated experimentally as a function of the amount of TBP added,acidity,zirconium and hafnium concentrations,salting-out agent,temperature,duration,respectively.The results show that hafnium is enriched in the organic layer and zirconium is in aqueous layer in DIBK-TBP system.Under the optimal technological conditions:TBP addition 20%(v/v),aqueous phase acidity 3.0 mol/L,ammonium sulfate addition 0.8-1.25 mol/L,room temperature and extraction time 10 min,the separation factor of hafnium from zirconium is 9.3.展开更多
The equilibrium and kinetics of methyl isobutyl ketone(MIBK) extraction resin for adsorption and separation of zirconium and hafnium were studied under the different conditions of acidity,initial total concentrations ...The equilibrium and kinetics of methyl isobutyl ketone(MIBK) extraction resin for adsorption and separation of zirconium and hafnium were studied under the different conditions of acidity,initial total concentrations of zirconium and hafnium and temperature.The equilibrium data of both zirconium and hafnium are found to follow the Freundlich adsorption isotherm,and the Freundlich isotherm constants(KF) are 3.53 and 0.64 mg/g,respectively.The equilibrium data of zirconium also fit the Langmuir adsorption isotherm,and the saturation adsorption capacity(Qmax) and the Langmuir isotherm constant(KL)are 75.93 mg/g and-0.012 7 L/g,respectively.The obtained kinetic data of both zirconium and hafnium are found to fit the HO pseudo-second-order kinetic model,and the rate constants of pseudo-second-order equation(k2) are-0.019 and 0.41 g/(mg·min),respectively.Column tests show that the MIBK extraction resin could be used as efficient adsorbent material for separating hafnium from zirconium.展开更多
The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-eth...The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-ethylhexyl)phosphoric acid(D2 EHPA). The effects of hydrochloric acid concentration, extractant concentration,diluents, and temperature on the distribution coefficient of hafnium and zirconium were studied. The species extracted were ZrOA_2·2 HA and HfOA_2-2 HA. In this process, the separation factors varied with different diluents and followed the order octane > hexane > toluene > chloroform.A high separation factor value of 4.16 was obtained under the conditions of a solution containing 0.05 mol/L HCl and0.01 mol/L D2 EHPA for the separation of hafnium from zirconium. The extraction reaction was endothermic.展开更多
The corrosion behaviors of hafnium in Et4NBr isopropanol and acetonitrile(ACN)solutions were investigated usingelectrochemical measurements,ICP-AES and SEM techniques.Results revealed that the open circuit potential g...The corrosion behaviors of hafnium in Et4NBr isopropanol and acetonitrile(ACN)solutions were investigated usingelectrochemical measurements,ICP-AES and SEM techniques.Results revealed that the open circuit potential gets more positive dueto the increased passivity of the surface oxide film with increasing immersion time until it reaches a steady state value.Thepotentiodynamic anodic polarization curves did not exhibit an active dissolution region near corrosion potential due to the presenceof an oxide film on the electrode surface,which was followed by pitting corrosion.SEM images confirmed the existence of pits onthe electrode surface.Cyclic voltammetry and galvanostatic measurements allowed the pitting potential(φpit)and the repassivationpotential(φp)to be determined.φpit increased with increasing potential scanning rate but decreased with increasing temperature,Br-concentration and ACN concentration.The impedance spectra showed that the resistances of the solution and charge transferdecreased with the increase of ACN concentration.展开更多
The novel synergistic mixture of TBP and Cyanex-272 is used as the extractant in the hollow fiber renewal liquid membrane(HFRLM) technique for Zr/Hf separation.The effects of the chemical and operational parameters su...The novel synergistic mixture of TBP and Cyanex-272 is used as the extractant in the hollow fiber renewal liquid membrane(HFRLM) technique for Zr/Hf separation.The effects of the chemical and operational parameters such as HNO3 concentration in the donor phase,NH4 F concentration in the acceptor phase,Cyanex-272 and TBP concentration in the liquid membrane phase,the lumen and shell side flow rates,and aqueous/organic volume ratio on the mass transfer and separation performance of HFRLM method were investigated.The obtained results reveal the intensification potential of proposed HFRLM technique for selective extraction of Zr over Hf with separation factor higher than 100.The HFRLM method provides two times higher mass transfer flux in comparison with hollow fiber supported liquid membrane(HFSLM).Also,the HFRLM method shows satisfactory stability for 700 min of continuous operation.The Zr ion transport through the LM phase follows the coupled co-transport mechanism and the diffusion in the renewal layer is recognized as the rate-controlling step in the HFRLM process.Moreover,the Zr mass transfer coefficient and molar flux in the HFRLM method are calculated in the range of 1×10^-8 to 8.4×10^-7 m·s^-1 and 4.9×10^-6 to 20.1×10^-6 mol·m^-2·s^-1,respectively.展开更多
To investigate the effect of hafnium addition on the solidification structure, Ti-46AI alloys with nominal compositions of Ti-46AI-xHf (x = 0, 3, 5, 7) (at.%) were arc-melted into small ingots in an argon atmosphe...To investigate the effect of hafnium addition on the solidification structure, Ti-46AI alloys with nominal compositions of Ti-46AI-xHf (x = 0, 3, 5, 7) (at.%) were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE), XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refinement. Increasing Hf from 0 to 7 (at.%), the columnar spacing can be reduced from - 1000 to-400 μm. Constitute phases of the ingots are a2, a small amount of B2 and 7. Most of the B2 phases, richer in Hf and leaner in AI and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The 7 phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the a-and ,β-phase form from the melt as prior phases. The possible phase sequencing during solidification and solid-state transformations with Hf is given in this paper.展开更多
Nano hafnium carbide(HfC) powders were synthesized by sol-gel combining hightemperature rapid heat treatment process using citric acid and hafnium tetrachloride as the raw materials. The effects of ball milling trea...Nano hafnium carbide(HfC) powders were synthesized by sol-gel combining hightemperature rapid heat treatment process using citric acid and hafnium tetrachloride as the raw materials. The effects of ball milling treatment on the phase and morphology of pyrolysis products(HfO_2-C) and final HfC product were investigated and the influences of heat treatment temperature and holding time on the structure and properties of the synthesized hafnium carbide powders were also studied. The experimental results showed that the HfO_2-C powders with good uniformity and small particle size were prepared by controlling the milling time. Pure HfC powders with an average particle size of 500 nm were obtained at 1 700 ℃ with a holding time of 3 min, and the oxygen content was about 0.69 wt%, lower than that of the hafnium carbide powders prepared by SPS(0.97%).展开更多
This paper describes the study of the extraction of Zr and Hf in nitric and hydrochloric media by solvent extraction technique using different types of extractants. The effect of the extractants DEHPA, IONQUEST?801 an...This paper describes the study of the extraction of Zr and Hf in nitric and hydrochloric media by solvent extraction technique using different types of extractants. The effect of the extractants DEHPA, IONQUEST?801 and CYANEX?272, TBP, CYANEX?923, PRIMENE?JTM, ALAMINE?336 and ALIQUAT?336 was investigated. For acid extractants in both nitric and hydrochloric media, a high degree of extraction was observed, although they had low selectivity in separating the metals. For the acid extractants also, it was not possible to strip the metals from the organic phase through acid solutions. In this case, a stripping solution with very high acidity would be required, and this is not viable. When the basic extractants were used, no metal extraction was observed under the conditions investigated, indicating no extractable anionic species in either media. The optimum zirconium/hafnium separation was achieved using an acidity of 7.0 mol?L?1, nitrate concentration of 9.2 mol?L?1 and 1.5 mol?L?1 of TBP. In these conditions, a separation factor of 12.6 was obtained.展开更多
The L_Ⅲ subshell absorption jump ratio and jump factor of hafnium have been measured using two different ways which are X-ray attenuation method and Energy Dispersive X-ray Fluorescence technique.The results obtained...The L_Ⅲ subshell absorption jump ratio and jump factor of hafnium have been measured using two different ways which are X-ray attenuation method and Energy Dispersive X-ray Fluorescence technique.The results obtained both ways have been compared with theoretical values.They are in good agreement with each other.展开更多
A dual system and dual wavelength spectrophotometry (DSDWS) used to simultaneously determine Zr and Hf were proposed. Zr(Hf)-XO-CIMAB and Zr(Hf)-CAB-CDMAA-Triton X-100 were chosen as a pair of chromophoric systems. Th...A dual system and dual wavelength spectrophotometry (DSDWS) used to simultaneously determine Zr and Hf were proposed. Zr(Hf)-XO-CIMAB and Zr(Hf)-CAB-CDMAA-Triton X-100 were chosen as a pair of chromophoric systems. The difference of chromophoric behaviours between Zr and Hf is increased by the addition of hydrogen peroxide as masking agent and by adjustment of acidity. The apparent molar absorptivities of Zr and Hf are 2.0×105 and 5.0×104 L·mol-1·cm-1 respectively. The procedure is simple and rapid.展开更多
Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar d...Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar distance(D):2.0?4.0cm and current density(J):100?400A/m2.The electrolytic products obtained under optimum conditions of c=0.04mol/L,t=78°C,D=2.0cm and J=100A/m2were further isolated by vacuum distillation under5kPa.The product was characterized byFourier transform infrared(FT-IR)spectra,nuclear magnetic resonance(NMR)spectra.The results indicated that the product washafnium ethoxide.ICP analysis suggested that the content of hafnium ethoxide in the final product exceeded99.997%.Thermalproperties of the product were analyzed by TG/DTG.The vaporization enthalpy of hafnium ethoxide was found to be79.1kJ/mol.The result confirmed that hafnium ethoxide was suitable for the preparation of hafnium oxide by atomic layer deposition.展开更多
The elastic anisotropy and superconductivity upon hydrostatic compression ofα,ω,and β Hf are investigated using first-principle methods.The results of elastic anisotropies show that they increase with increasing pr...The elastic anisotropy and superconductivity upon hydrostatic compression ofα,ω,and β Hf are investigated using first-principle methods.The results of elastic anisotropies show that they increase with increasing pressure for α and ω phases,while decrease upon compression forβphase.The calculated superconducting transition temperatures are in excellent agreement with experiments.Electron-phonon coupling constants(λ)are increasing with pressure for α and ω phases,while decreasing for β phase.For β phase,the large values ofλare mainly due to the obvious TA1 soft mode.Under further compression,the TA1 soft vibrational mode will disappear gradually.展开更多
The intercalation of heteroatoms between graphene and metal substrates is a promising method for integrating epitaxial graphene with functional materials.Various elements and their oxides have been successfully interc...The intercalation of heteroatoms between graphene and metal substrates is a promising method for integrating epitaxial graphene with functional materials.Various elements and their oxides have been successfully intercalated into graphene/metal interfaces to form graphene-based heterostructures,showing potential applications in electronic devices.Here we theoretically investigate the hafnium intercalation between graphene and Ir(111).It is found that the penetration barrier of Hf atom is significantly large due to its large atomic radius,which suggests that hafnium intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures.Our results show the different intercalation behaviors of a large-size atom and provide guidance for the integration of graphene and hafnium oxide in device applications.展开更多
Two-dimensional(2D)nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features.Herein,2D hafnium ditelluride(HfTe_(2)),a new member of transition metal tellurides,is e...Two-dimensional(2D)nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features.Herein,2D hafnium ditelluride(HfTe_(2)),a new member of transition metal tellurides,is exploited to support gold nanoparticles fabricating HfTe_(2)-Au nanocomposites.The nanohybrids can serve as novel 2D surface-enhanced Raman scattering(SERS)substrate for the label-free detection of analyte with high sensitivity and reproducibility.Chemical mechanism originated from HfTe_(2) nanosheets and the electromagnetic enhancement induced by the hot spots on the nano-hybrids may largely contribute to the superior SERS effect of HfTe_(2)-Au nanocomposites.Finally,HfTe_(2)-Au nanocomposites are utilized for the label-free SERS analysis of foodborne pathogenic bac-teria,which realize the rapid and ultrasensitive Raman test of Escherichia coli,Listeria mono-cytogenes,Staphylococcus aureus and Salmonella with the limit of detection of 10 CFU/mL and the maximum Raman enhancement factor up to 1.7×10^(8).Combined with principal component analysis,HfTe_(2)-Au-based SERS analysis also completes the bacterial classification without extra treatment.展开更多
We examine 10 nm thick film structures containing either Hf or Ti sandwiched between two respective oxide layers. The layers are deposited onto heated substrates to create a diffusion region. We observe a high degree ...We examine 10 nm thick film structures containing either Hf or Ti sandwiched between two respective oxide layers. The layers are deposited onto heated substrates to create a diffusion region. We observe a high degree of light sensitivity of the electric current through the film thickness for one polarity of an applied voltage. For the other polarity, the current is not affected by the light. We explain the observed phenomenology using the single-particle model based on the existence of interface states on the metal-oxide interfaces.展开更多
Ferroelectric thin films based on HfO2 have garnered increasing attention worldwide,primarily due to their remarkable compatibility with silicon and scalability,in contrast to traditional perovskite-structured ferroel...Ferroelectric thin films based on HfO2 have garnered increasing attention worldwide,primarily due to their remarkable compatibility with silicon and scalability,in contrast to traditional perovskite-structured ferroelectric materials.Nonetheless,significant challenges remain in their widespread commercial utilization,particularly concerning their notable wake-up effect and limited endurance.To address these challenges,we propose a novel strategy involving the inhomogeneous distribution of Hf/Zr elements within thin films and explore its effects on the ferroelectricity and endurance of Hf_(0.5)Zr_(0.5)O_(2) thin films.Through techniques such as grazing incidence X-ray diffraction,transmission electron microscopy,and piezoresponse force microscopy,we investigated the structural characteristics and domain switching behaviors of these materials.The experimental results indicate that the inhomogeneous distribution of Hf/Zr contributes to improving the frequency stability and endurance while maintaining a large remnant polarization in Hf_(0.5)Zr_(0.5)O_(2) ferroelectric thin films.By adjusting the distribution of Zr/Hf within the Hf_(0.5)Zr_(0.5)O_(2) thin films,significant enhancements in the remnant polarization(2Pr>35μC/cm2)and endurance(>109)along with a reduced coercive voltage can be achieved.Additionally,the fabricated ferroelectric thin films also exhibit high dielectric tunability(≥26%)under a low operating voltage of 2.5 V,whether in the wake-up state or not.This study offers a promising approach to optimize both the ferroelectricity and endurance of HfO_(2)-based thin films.展开更多
Durable and efficient bi-functional catalyst,that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition,are highly desired for the commercialization of proton exchange mem...Durable and efficient bi-functional catalyst,that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition,are highly desired for the commercialization of proton exchange membrane water electrolysis.Herein,we report a robust L-Ru/HfO_(2)heterostructure constructed via confining crystalline Ru nanodomains by HfO_(2)matrix.When assembled with a proton exchange membrane,the bi-functional L-Ru/HfO_(2)catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm^(-2)current density,prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO_(2)electrolyzer.It is revealed that the synergistic effect of HfO_(2)modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru.More importantly,this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates.As a result,the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step(^(*)O→^(*)OOH).Both of water adsorption and dissociation(Volmer step)are strengthened,while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure(Tafel step).Consequently,the activity and stability of acidic overall water splitting are simultaneously enhanced.展开更多
基金the Ministry of Science and Technology of China(Grant Nos.2018YFA0305800 and2019YFA0308500)the National Natural Science Foundation of China(Grant No.61925111)+2 种基金the Chinese Academy of Sciences(Grant Nos.XDB28000000 and YSBR-003)the Fundamental Research Funds for the Central Universitiesthe CAS Key Laboratory of Vacuum Physics。
文摘Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene,and thus essential for the graphene-based devices.Here we demonstrate a successful solution for the intercalation of hafnium oxide into the interface between full-layer graphene and Ir(111)substrate.We first intercalate hafnium atoms beneath the epitaxial graphene.The intercalation of the hafnium atoms leads to the variation of the graphene moire superstructure periodicity,which is characterized by low-energy electron diffraction(LEED)and lowtemperature scanning tunneling microscopy(LT-STM).Subsequently,we introduce oxygen into the interface,resulting in oxidization of the intercalated hafnium.STM and Raman's characterizations reveal that the intercalated hafnium oxide layer could effectively decouple the graphene from the metallic substrate,while the graphene maintains its high quality.Our work suggests a high-k dielectric layer has been successfully intercalated between high-quality epitaxial graphene and metal substrate,providing a platform for applications of large-scale,high-quality graphene for electronic devices.
基金Project (2012BAB10B10) supported by the National Key Technology R&D Program during the 12th Five-year Plan of ChinaProject (51174146) supported by the National Natural Science Foundation of China+2 种基金Project (212110) supported by the Foundation for Key Program of Ministry of Education,ChinaProject (Q20111509) supported by the Program for Excellent Talents of the Education Department of Hubei Province,ChinaProject (10125042) supported by the Scientific Research Foundation of Wuhan Institute of Technology,China
文摘A novel process for the separation of hafnium from thiocyanic acid medium using the mixture of diisobutyl ketone(DIBK) and tributyl phosphate(TBP) as the extractant was developed.This extraction process was investigated experimentally as a function of the amount of TBP added,acidity,zirconium and hafnium concentrations,salting-out agent,temperature,duration,respectively.The results show that hafnium is enriched in the organic layer and zirconium is in aqueous layer in DIBK-TBP system.Under the optimal technological conditions:TBP addition 20%(v/v),aqueous phase acidity 3.0 mol/L,ammonium sulfate addition 0.8-1.25 mol/L,room temperature and extraction time 10 min,the separation factor of hafnium from zirconium is 9.3.
文摘The equilibrium and kinetics of methyl isobutyl ketone(MIBK) extraction resin for adsorption and separation of zirconium and hafnium were studied under the different conditions of acidity,initial total concentrations of zirconium and hafnium and temperature.The equilibrium data of both zirconium and hafnium are found to follow the Freundlich adsorption isotherm,and the Freundlich isotherm constants(KF) are 3.53 and 0.64 mg/g,respectively.The equilibrium data of zirconium also fit the Langmuir adsorption isotherm,and the saturation adsorption capacity(Qmax) and the Langmuir isotherm constant(KL)are 75.93 mg/g and-0.012 7 L/g,respectively.The obtained kinetic data of both zirconium and hafnium are found to fit the HO pseudo-second-order kinetic model,and the rate constants of pseudo-second-order equation(k2) are-0.019 and 0.41 g/(mg·min),respectively.Column tests show that the MIBK extraction resin could be used as efficient adsorbent material for separating hafnium from zirconium.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR201702160381)
文摘The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-ethylhexyl)phosphoric acid(D2 EHPA). The effects of hydrochloric acid concentration, extractant concentration,diluents, and temperature on the distribution coefficient of hafnium and zirconium were studied. The species extracted were ZrOA_2·2 HA and HfOA_2-2 HA. In this process, the separation factors varied with different diluents and followed the order octane > hexane > toluene > chloroform.A high separation factor value of 4.16 was obtained under the conditions of a solution containing 0.05 mol/L HCl and0.01 mol/L D2 EHPA for the separation of hafnium from zirconium. The extraction reaction was endothermic.
基金Project(51374254) supported by the National Natural Science Foundation of China
文摘The corrosion behaviors of hafnium in Et4NBr isopropanol and acetonitrile(ACN)solutions were investigated usingelectrochemical measurements,ICP-AES and SEM techniques.Results revealed that the open circuit potential gets more positive dueto the increased passivity of the surface oxide film with increasing immersion time until it reaches a steady state value.Thepotentiodynamic anodic polarization curves did not exhibit an active dissolution region near corrosion potential due to the presenceof an oxide film on the electrode surface,which was followed by pitting corrosion.SEM images confirmed the existence of pits onthe electrode surface.Cyclic voltammetry and galvanostatic measurements allowed the pitting potential(φpit)and the repassivationpotential(φp)to be determined.φpit increased with increasing potential scanning rate but decreased with increasing temperature,Br-concentration and ACN concentration.The impedance spectra showed that the resistances of the solution and charge transferdecreased with the increase of ACN concentration.
文摘The novel synergistic mixture of TBP and Cyanex-272 is used as the extractant in the hollow fiber renewal liquid membrane(HFRLM) technique for Zr/Hf separation.The effects of the chemical and operational parameters such as HNO3 concentration in the donor phase,NH4 F concentration in the acceptor phase,Cyanex-272 and TBP concentration in the liquid membrane phase,the lumen and shell side flow rates,and aqueous/organic volume ratio on the mass transfer and separation performance of HFRLM method were investigated.The obtained results reveal the intensification potential of proposed HFRLM technique for selective extraction of Zr over Hf with separation factor higher than 100.The HFRLM method provides two times higher mass transfer flux in comparison with hollow fiber supported liquid membrane(HFSLM).Also,the HFRLM method shows satisfactory stability for 700 min of continuous operation.The Zr ion transport through the LM phase follows the coupled co-transport mechanism and the diffusion in the renewal layer is recognized as the rate-controlling step in the HFRLM process.Moreover,the Zr mass transfer coefficient and molar flux in the HFRLM method are calculated in the range of 1×10^-8 to 8.4×10^-7 m·s^-1 and 4.9×10^-6 to 20.1×10^-6 mol·m^-2·s^-1,respectively.
基金supported by the National Natural Science Foundation of China(50771041)NCET 05-0350.
文摘To investigate the effect of hafnium addition on the solidification structure, Ti-46AI alloys with nominal compositions of Ti-46AI-xHf (x = 0, 3, 5, 7) (at.%) were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE), XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refinement. Increasing Hf from 0 to 7 (at.%), the columnar spacing can be reduced from - 1000 to-400 μm. Constitute phases of the ingots are a2, a small amount of B2 and 7. Most of the B2 phases, richer in Hf and leaner in AI and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The 7 phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the a-and ,β-phase form from the melt as prior phases. The possible phase sequencing during solidification and solid-state transformations with Hf is given in this paper.
基金the National Key R&D Program of China(2017YFB0310400)the National Natural Science Foundation of China(51672197)
文摘Nano hafnium carbide(HfC) powders were synthesized by sol-gel combining hightemperature rapid heat treatment process using citric acid and hafnium tetrachloride as the raw materials. The effects of ball milling treatment on the phase and morphology of pyrolysis products(HfO_2-C) and final HfC product were investigated and the influences of heat treatment temperature and holding time on the structure and properties of the synthesized hafnium carbide powders were also studied. The experimental results showed that the HfO_2-C powders with good uniformity and small particle size were prepared by controlling the milling time. Pure HfC powders with an average particle size of 500 nm were obtained at 1 700 ℃ with a holding time of 3 min, and the oxygen content was about 0.69 wt%, lower than that of the hafnium carbide powders prepared by SPS(0.97%).
文摘This paper describes the study of the extraction of Zr and Hf in nitric and hydrochloric media by solvent extraction technique using different types of extractants. The effect of the extractants DEHPA, IONQUEST?801 and CYANEX?272, TBP, CYANEX?923, PRIMENE?JTM, ALAMINE?336 and ALIQUAT?336 was investigated. For acid extractants in both nitric and hydrochloric media, a high degree of extraction was observed, although they had low selectivity in separating the metals. For the acid extractants also, it was not possible to strip the metals from the organic phase through acid solutions. In this case, a stripping solution with very high acidity would be required, and this is not viable. When the basic extractants were used, no metal extraction was observed under the conditions investigated, indicating no extractable anionic species in either media. The optimum zirconium/hafnium separation was achieved using an acidity of 7.0 mol?L?1, nitrate concentration of 9.2 mol?L?1 and 1.5 mol?L?1 of TBP. In these conditions, a separation factor of 12.6 was obtained.
文摘The L_Ⅲ subshell absorption jump ratio and jump factor of hafnium have been measured using two different ways which are X-ray attenuation method and Energy Dispersive X-ray Fluorescence technique.The results obtained both ways have been compared with theoretical values.They are in good agreement with each other.
文摘A dual system and dual wavelength spectrophotometry (DSDWS) used to simultaneously determine Zr and Hf were proposed. Zr(Hf)-XO-CIMAB and Zr(Hf)-CAB-CDMAA-Triton X-100 were chosen as a pair of chromophoric systems. The difference of chromophoric behaviours between Zr and Hf is increased by the addition of hydrogen peroxide as masking agent and by adjustment of acidity. The apparent molar absorptivities of Zr and Hf are 2.0×105 and 5.0×104 L·mol-1·cm-1 respectively. The procedure is simple and rapid.
基金Project(51374254) supported by the National Natural Science Foundation of China
文摘Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar distance(D):2.0?4.0cm and current density(J):100?400A/m2.The electrolytic products obtained under optimum conditions of c=0.04mol/L,t=78°C,D=2.0cm and J=100A/m2were further isolated by vacuum distillation under5kPa.The product was characterized byFourier transform infrared(FT-IR)spectra,nuclear magnetic resonance(NMR)spectra.The results indicated that the product washafnium ethoxide.ICP analysis suggested that the content of hafnium ethoxide in the final product exceeded99.997%.Thermalproperties of the product were analyzed by TG/DTG.The vaporization enthalpy of hafnium ethoxide was found to be79.1kJ/mol.The result confirmed that hafnium ethoxide was suitable for the preparation of hafnium oxide by atomic layer deposition.
基金the National Natural Science Foundation of China(Grant Nos.11874247 and U1530258)the National Key R&D Program of China(Grant No.2017YFA0304500)+2 种基金the 111 Plan of China(Grant No.D18001)the Hundred Talent Program of the Shanxi Province(2018)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices of China(Grant Nos.KF201703 and KF201904).
文摘The elastic anisotropy and superconductivity upon hydrostatic compression ofα,ω,and β Hf are investigated using first-principle methods.The results of elastic anisotropies show that they increase with increasing pressure for α and ω phases,while decrease upon compression forβphase.The calculated superconducting transition temperatures are in excellent agreement with experiments.Electron-phonon coupling constants(λ)are increasing with pressure for α and ω phases,while decreasing for β phase.For β phase,the large values ofλare mainly due to the obvious TA1 soft mode.Under further compression,the TA1 soft vibrational mode will disappear gradually.
基金Project supported by the National Natural Science Foundation of China(Grant No.61888102)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities,China。
文摘The intercalation of heteroatoms between graphene and metal substrates is a promising method for integrating epitaxial graphene with functional materials.Various elements and their oxides have been successfully intercalated into graphene/metal interfaces to form graphene-based heterostructures,showing potential applications in electronic devices.Here we theoretically investigate the hafnium intercalation between graphene and Ir(111).It is found that the penetration barrier of Hf atom is significantly large due to its large atomic radius,which suggests that hafnium intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures.Our results show the different intercalation behaviors of a large-size atom and provide guidance for the integration of graphene and hafnium oxide in device applications.
基金supported by the National Natural Science Foundation of China(11874021,61675072 and 21505047)the Science and Technology Project of Guangdong Province of China(2017A020215059)+2 种基金the Science and Technology Project of Guangzhou City(201904010323 and 2019050001)the Innovation Project of Graduate School of South China Normal University School(2019LKXM023)the Natural Science Research Project of Guangdong Food and Drug Vocational College(2019ZR01)
文摘Two-dimensional(2D)nanomaterials have captured an increasing attention in biophotonics owing to their excellent optical features.Herein,2D hafnium ditelluride(HfTe_(2)),a new member of transition metal tellurides,is exploited to support gold nanoparticles fabricating HfTe_(2)-Au nanocomposites.The nanohybrids can serve as novel 2D surface-enhanced Raman scattering(SERS)substrate for the label-free detection of analyte with high sensitivity and reproducibility.Chemical mechanism originated from HfTe_(2) nanosheets and the electromagnetic enhancement induced by the hot spots on the nano-hybrids may largely contribute to the superior SERS effect of HfTe_(2)-Au nanocomposites.Finally,HfTe_(2)-Au nanocomposites are utilized for the label-free SERS analysis of foodborne pathogenic bac-teria,which realize the rapid and ultrasensitive Raman test of Escherichia coli,Listeria mono-cytogenes,Staphylococcus aureus and Salmonella with the limit of detection of 10 CFU/mL and the maximum Raman enhancement factor up to 1.7×10^(8).Combined with principal component analysis,HfTe_(2)-Au-based SERS analysis also completes the bacterial classification without extra treatment.
文摘We examine 10 nm thick film structures containing either Hf or Ti sandwiched between two respective oxide layers. The layers are deposited onto heated substrates to create a diffusion region. We observe a high degree of light sensitivity of the electric current through the film thickness for one polarity of an applied voltage. For the other polarity, the current is not affected by the light. We explain the observed phenomenology using the single-particle model based on the existence of interface states on the metal-oxide interfaces.
基金supported by the National Natural Science Foundation of China(Nos.52122205,52302151,11932016,12302429,and 12202330)the Qin Chuang Yuan Cited High-level Innovation and Entrepreneurship Talent Project(No.QCYRCXM-2023-075)+2 种基金the Fundamental Research Funds for the Central Universities(No.ZYTS24122)the Xidian University Specially Funded Project for Interdisciplinary Exploration(No.TZJH2024054)the Start-up Foundation of Xidian University(No.10251220008).
文摘Ferroelectric thin films based on HfO2 have garnered increasing attention worldwide,primarily due to their remarkable compatibility with silicon and scalability,in contrast to traditional perovskite-structured ferroelectric materials.Nonetheless,significant challenges remain in their widespread commercial utilization,particularly concerning their notable wake-up effect and limited endurance.To address these challenges,we propose a novel strategy involving the inhomogeneous distribution of Hf/Zr elements within thin films and explore its effects on the ferroelectricity and endurance of Hf_(0.5)Zr_(0.5)O_(2) thin films.Through techniques such as grazing incidence X-ray diffraction,transmission electron microscopy,and piezoresponse force microscopy,we investigated the structural characteristics and domain switching behaviors of these materials.The experimental results indicate that the inhomogeneous distribution of Hf/Zr contributes to improving the frequency stability and endurance while maintaining a large remnant polarization in Hf_(0.5)Zr_(0.5)O_(2) ferroelectric thin films.By adjusting the distribution of Zr/Hf within the Hf_(0.5)Zr_(0.5)O_(2) thin films,significant enhancements in the remnant polarization(2Pr>35μC/cm2)and endurance(>109)along with a reduced coercive voltage can be achieved.Additionally,the fabricated ferroelectric thin films also exhibit high dielectric tunability(≥26%)under a low operating voltage of 2.5 V,whether in the wake-up state or not.This study offers a promising approach to optimize both the ferroelectricity and endurance of HfO_(2)-based thin films.
基金supported by the National Natural Science Foundation of China(Grant No.22279162,22261142664)Natural Science Fund for Colleges and Universities in Anhui Province(2022AH030057)CAS Project for Young Scientists in Basic Research(No.YSBR-094).
文摘Durable and efficient bi-functional catalyst,that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition,are highly desired for the commercialization of proton exchange membrane water electrolysis.Herein,we report a robust L-Ru/HfO_(2)heterostructure constructed via confining crystalline Ru nanodomains by HfO_(2)matrix.When assembled with a proton exchange membrane,the bi-functional L-Ru/HfO_(2)catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm^(-2)current density,prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO_(2)electrolyzer.It is revealed that the synergistic effect of HfO_(2)modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru.More importantly,this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates.As a result,the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step(^(*)O→^(*)OOH).Both of water adsorption and dissociation(Volmer step)are strengthened,while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure(Tafel step).Consequently,the activity and stability of acidic overall water splitting are simultaneously enhanced.