Rapid halide anion exchange easily occurring in metal-halide perovskite nanoparticles(NPs)makes it nearly impossible to create a single three-dimensional(3D)CsPbX_(3)(X=Cl,Br,I)NP that simultaneously comprises two sep...Rapid halide anion exchange easily occurring in metal-halide perovskite nanoparticles(NPs)makes it nearly impossible to create a single three-dimensional(3D)CsPbX_(3)(X=Cl,Br,I)NP that simultaneously comprises two separate perovskite components.To circumvent this problem,we first propose a Ni^(2+)-mediated halide anion-exchange strategy in zero-dimensional(0D)Ni^(2+)-doped Cs_(4)PbBr_(6)(Cs_(4)PbBr_(6):Ni)perovskites to achieve ultra-stable 3D CsPbX_(3)NPs with two coexisting different perovskite individuals of CsPbCl_(3)and/or CsPbBr_(3).By combining the experimental results with first-principles calculations,we confirm that the completely isolated[PbBr_(6)]4−octahedra in 0D Cs_(4)PbBr_(6):Ni NPs can restrict rapid halide anion exchange and the anion diffusion preferentially proceeds in the proximity of substitutional NiPb centers,namely[NiBr_(6)]4−octahedra in a meta-stable state,rather than in the 0D Cs_(4)PbBr_(6)and residual 3D CsPbBr_(3)regions,thereby delivering intrinsic dual-band excitonic luminescence from a single 3D CsPbX_(3)NP with a more stable and efficient CsPbCl_(3)component as compared to its counterparts synthesized using conventional methods.These new insights regarding the precise control of halide anion exchange enable the preparation of a new type of high-efficiency perovskite materials with suppressed anion interdiffusion for prospective optoelectronic devices.展开更多
The interplay of molecular rigidity enforced by interior or exterior hydrogen bonding and affinity for binding halide anions is described to demonstrate the effect of intramolecular hydrogen bonding in anion recogniti...The interplay of molecular rigidity enforced by interior or exterior hydrogen bonding and affinity for binding halide anions is described to demonstrate the effect of intramolecular hydrogen bonding in anion recognition process. To this end pyridine-2,6-dicarboxamides 1 and 2, and aromatic oligoamides 3 and 4 containing intramolecular hydrogen bonds were explored for their ability in associating with tetrabutylammonium halide (Cl^-, Br^-, and I^-). Binding constants in chloroform solution were calculated using nonlinear curve-fitting method based on ^1H NMR titration experiments. The trimeric amide 3, which adopts a crescent conformation as revealed by single-crystal X-ray diffraction analysis, strongly binds chloride anion with binding constant as high as 379 L·mol^-1. This is more than 6 times greater than the binding constant for the control receptor 2 with a backbone that is only partially rigidifled. The comparative data provided supportive information for rationalizing the observed affinity difference in binding halide anions in terms of local preorganization effected by interior or exterior hydrogen bonding.展开更多
The photoinduced reactions of aryl halides with carbazolyl nitrogen anion,in dimethyl sulfoxide,yield the corresponding N-arylated products.These reactions are suggested in terms of the S;Nl mechaism of nucleophilic s...The photoinduced reactions of aryl halides with carbazolyl nitrogen anion,in dimethyl sulfoxide,yield the corresponding N-arylated products.These reactions are suggested in terms of the S;Nl mechaism of nucleophilic substitution.展开更多
The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon t...The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.展开更多
Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on th...Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on the formation mechanism,crystallography,and photoelectric properties of the lowdimensional phase still requires further detailed study.In this work,we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts,clarifying the effect of anions on the formation of quasi-2D/3D heterojunctions.To demonstrate the importance of halide influences,we employ novel neo-pentylammonium halide salts with different halide anions(neoPAX,X=I,Br,or Cl).We find that regardless of halide selection,iodide-based(neoPA)_(2)(FA)_((n-1))PbnI_((3n+1))phases are formed above the perovskite substrate,while the added halide anions diffuse and passivate the perovskite bulk.In addition,we also find the halide choice has an influence on the degree of dimensionality(n).Comparing the three halides,we find that chloride-based salts exhibit superior crystallographic,enhanced carrier transport,and extraction compared to the iodide and bromide analogs.As a result,we report high power conversion efficiency in quasi-2D/3D PSCs,which are optimal when using chloride salts,reaching up to 23.35%,and improving long-term stability.展开更多
基金supported by the Fund of Fujian Science&Technology Innovation Laboratory for Optoelectronic Information(grant nos.2020ZZ114 and 2022ZZ204)the Key Research Program of Frontier Science CAS(grant no.QYZDY-SSW-SLH025)+1 种基金the National Natural Science Foundation of China(grant nos.21731006 and 21871256)the Fund of Advanced Energy Science and Technology Guangdong Laboratory(grant no.DJLTN0200/DJLTN0240).
文摘Rapid halide anion exchange easily occurring in metal-halide perovskite nanoparticles(NPs)makes it nearly impossible to create a single three-dimensional(3D)CsPbX_(3)(X=Cl,Br,I)NP that simultaneously comprises two separate perovskite components.To circumvent this problem,we first propose a Ni^(2+)-mediated halide anion-exchange strategy in zero-dimensional(0D)Ni^(2+)-doped Cs_(4)PbBr_(6)(Cs_(4)PbBr_(6):Ni)perovskites to achieve ultra-stable 3D CsPbX_(3)NPs with two coexisting different perovskite individuals of CsPbCl_(3)and/or CsPbBr_(3).By combining the experimental results with first-principles calculations,we confirm that the completely isolated[PbBr_(6)]4−octahedra in 0D Cs_(4)PbBr_(6):Ni NPs can restrict rapid halide anion exchange and the anion diffusion preferentially proceeds in the proximity of substitutional NiPb centers,namely[NiBr_(6)]4−octahedra in a meta-stable state,rather than in the 0D Cs_(4)PbBr_(6)and residual 3D CsPbBr_(3)regions,thereby delivering intrinsic dual-band excitonic luminescence from a single 3D CsPbX_(3)NP with a more stable and efficient CsPbCl_(3)component as compared to its counterparts synthesized using conventional methods.These new insights regarding the precise control of halide anion exchange enable the preparation of a new type of high-efficiency perovskite materials with suppressed anion interdiffusion for prospective optoelectronic devices.
文摘The interplay of molecular rigidity enforced by interior or exterior hydrogen bonding and affinity for binding halide anions is described to demonstrate the effect of intramolecular hydrogen bonding in anion recognition process. To this end pyridine-2,6-dicarboxamides 1 and 2, and aromatic oligoamides 3 and 4 containing intramolecular hydrogen bonds were explored for their ability in associating with tetrabutylammonium halide (Cl^-, Br^-, and I^-). Binding constants in chloroform solution were calculated using nonlinear curve-fitting method based on ^1H NMR titration experiments. The trimeric amide 3, which adopts a crescent conformation as revealed by single-crystal X-ray diffraction analysis, strongly binds chloride anion with binding constant as high as 379 L·mol^-1. This is more than 6 times greater than the binding constant for the control receptor 2 with a backbone that is only partially rigidifled. The comparative data provided supportive information for rationalizing the observed affinity difference in binding halide anions in terms of local preorganization effected by interior or exterior hydrogen bonding.
文摘The photoinduced reactions of aryl halides with carbazolyl nitrogen anion,in dimethyl sulfoxide,yield the corresponding N-arylated products.These reactions are suggested in terms of the S;Nl mechaism of nucleophilic substitution.
基金Project(2018YFC1900304)supported by the National Key R&D Program of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,ChinaProject(2017SK2420)supported by the Science and Technology of Hunan Province,China。
文摘The corrosion behaviors and electrochemical properties of Q235 A steel in the treated water containing corrosive halide anions(F-, Cl-) have been investigated with corrosion tests of static coupon and dynamic coupon testing, electrochemical measurement of open-circuit potential and linear sweep voltammetry. The results reveal that the existence of F-and Cl-ions in the simulated treated water accelerate the corrosion rate of Q235 A steel. The corrosion rate reaches maximum with F-concentration of 50 mg/L, Cl-concentration of 200 mg/L, respectively. However, Q235 A steel would passivate when an applied potential is added to the system. Meanwhile, the initiating passive potential becomes positive with F-, Cl-concentration increasing. There is a little influence of F-, Cl-concentration on the initiating passivation current density. Therefore, it is necessary to control F-, Cl-concentration in the treated water when it is recycled by the pipelines made of Q235 A steel.
基金X.L.and T.W.are contributed equally to this work.W.Z.acknowledges the Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018EP/R043272/1)+8 种基金Marie Skłodowska-Curie Actions Individual Fellowships(839136)H.L.acknowledges the Newton Advanced Fellowship(192097)X.L.acknowledges the financial support from Zhengzhou University ScholarshipT.W thanks the University of Surrey Doctoral College for financial supportS.J.S.gratefully acknowledges the support of EPSRC(UK)under grant number EP/N021037/1L.D.thanks the China Scholarship Council and the Cambridge Trusts for fundingR.C.K.and J.A.S.thank the company Xenocs for their ongoing support through the X-ray scattering user program at the University of Sheffield and the EPSRC for funding the purchase of this instrumentZ.W.,Y.S.,and G.S.thank the financial support from Zhengzhou Materials Genome InstituteS.D.S.and K.J.acknowledge the Royal Society for funding。
文摘Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on the formation mechanism,crystallography,and photoelectric properties of the lowdimensional phase still requires further detailed study.In this work,we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts,clarifying the effect of anions on the formation of quasi-2D/3D heterojunctions.To demonstrate the importance of halide influences,we employ novel neo-pentylammonium halide salts with different halide anions(neoPAX,X=I,Br,or Cl).We find that regardless of halide selection,iodide-based(neoPA)_(2)(FA)_((n-1))PbnI_((3n+1))phases are formed above the perovskite substrate,while the added halide anions diffuse and passivate the perovskite bulk.In addition,we also find the halide choice has an influence on the degree of dimensionality(n).Comparing the three halides,we find that chloride-based salts exhibit superior crystallographic,enhanced carrier transport,and extraction compared to the iodide and bromide analogs.As a result,we report high power conversion efficiency in quasi-2D/3D PSCs,which are optimal when using chloride salts,reaching up to 23.35%,and improving long-term stability.