As seemingly persuasive as Chomsky's theory is, it is significantly flawed in four aspects: 1. ignoring a much fundamental creative force in early infancy; 2. equation of first-language learning with second-langua...As seemingly persuasive as Chomsky's theory is, it is significantly flawed in four aspects: 1. ignoring a much fundamental creative force in early infancy; 2. equation of first-language learning with second-language learning; 3. methodology; 4. employment of terms.展开更多
This paper first illustrates S.D. Krashen's language acquisition theory, especially two of his five hypotheses as well as the guidance of these theories towards the teaching of business English reading for student...This paper first illustrates S.D. Krashen's language acquisition theory, especially two of his five hypotheses as well as the guidance of these theories towards the teaching of business English reading for students majored in business English.展开更多
Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical...Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical developments in Anderson’s production systems cover a broader range of behavior than other theories, including comprehension and production of oral and written texts as well as comprehension, problem solving, and verbal learning.Thus Anderson’s cognitive theory can be served as a rationale for learning strategy studies in second language acquisition.展开更多
Krashen's second language acquisition theory consists of language input theory,emotion filtering theory and languageoutput theory.In order to apply Krashen's second language acquisition theory to college Engli...Krashen's second language acquisition theory consists of language input theory,emotion filtering theory and languageoutput theory.In order to apply Krashen's second language acquisition theory to college English teaching,it is suggested to commence from the acquisition and learning theories to optimize the teaching environment and methods.On the basis of language input theory,emotional filtering theory and language output theory,English input quality could be improved,students'learning interests could be stimulated and English practical teaching could be accelerated respectively.展开更多
Recently we proposed the linguistic Copenhagen interpretation (or, quantum language), which has a great power to describe both classical and quantum systems. Thus we think that quantum language can be viewed as the la...Recently we proposed the linguistic Copenhagen interpretation (or, quantum language), which has a great power to describe both classical and quantum systems. Thus we think that quantum language can be viewed as the language of science. Therefore, it makes sense to study, from the quantum linguistic point of view, Wittgenstein’s picture theory, since he must have wanted to create a language of science. In this paper, we show that the proposition that Wittgenstein studied in his book “Tractatus Logico-Philosophicus” can be regarded as a binary projective measurement in classical quantum language. And thus, we conclude that Wittgenstein’s language (<em>i.e.</em>, the language that he supposed in his book) is realized by classical quantum language. Hence, now we can fully understand Wittgenstein’s picture theory since the reason his book is incomprehensible is that he did not define his language.展开更多
The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is stric...The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is strictly digital—not quantitative in the manner that what is usually thought of as mathematics is quantitative. It is anticipated at this time that the exclusively digital nature of rational human intelligence exhibits four flavors of digitality, apparently no more, and that each flavor will require a lengthy study in its own right. (For more information,please refer to the PDF.)展开更多
Based on Nida’s Functional Equivalence theory,this article makes an analysis of the problems in C-E translations ofsigns in China.The author will discuss respectively the problematic C-E translations from two respect...Based on Nida’s Functional Equivalence theory,this article makes an analysis of the problems in C-E translations ofsigns in China.The author will discuss respectively the problematic C-E translations from two respects:1)not being equivalent tosource-language message,and 2)not being natural for target language.If translators work hard with the help of Nida’s functionalequivalence theory,the defects and imperfections will be discovered,and standard signs in English will be read more and more inpublic places.展开更多
In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped i...In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelligence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one another. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other disciplines, an effort is made to describe the mathematics more explicitly than is usual.展开更多
The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approach...The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.展开更多
文摘As seemingly persuasive as Chomsky's theory is, it is significantly flawed in four aspects: 1. ignoring a much fundamental creative force in early infancy; 2. equation of first-language learning with second-language learning; 3. methodology; 4. employment of terms.
文摘This paper first illustrates S.D. Krashen's language acquisition theory, especially two of his five hypotheses as well as the guidance of these theories towards the teaching of business English reading for students majored in business English.
文摘Second language acquisition can not be understood without addressing the interaction between language and cognition. Cognitive theory can extend to describe learning strategies as complex cognitive skills. Theoretical developments in Anderson’s production systems cover a broader range of behavior than other theories, including comprehension and production of oral and written texts as well as comprehension, problem solving, and verbal learning.Thus Anderson’s cognitive theory can be served as a rationale for learning strategy studies in second language acquisition.
文摘Krashen's second language acquisition theory consists of language input theory,emotion filtering theory and languageoutput theory.In order to apply Krashen's second language acquisition theory to college English teaching,it is suggested to commence from the acquisition and learning theories to optimize the teaching environment and methods.On the basis of language input theory,emotional filtering theory and language output theory,English input quality could be improved,students'learning interests could be stimulated and English practical teaching could be accelerated respectively.
文摘Recently we proposed the linguistic Copenhagen interpretation (or, quantum language), which has a great power to describe both classical and quantum systems. Thus we think that quantum language can be viewed as the language of science. Therefore, it makes sense to study, from the quantum linguistic point of view, Wittgenstein’s picture theory, since he must have wanted to create a language of science. In this paper, we show that the proposition that Wittgenstein studied in his book “Tractatus Logico-Philosophicus” can be regarded as a binary projective measurement in classical quantum language. And thus, we conclude that Wittgenstein’s language (<em>i.e.</em>, the language that he supposed in his book) is realized by classical quantum language. Hence, now we can fully understand Wittgenstein’s picture theory since the reason his book is incomprehensible is that he did not define his language.
文摘The design of this paper is to present the first installment of a complete and final theory of rational human intelligence. The theory is mathematical in the strictest possible sense. The mathematics involved is strictly digital—not quantitative in the manner that what is usually thought of as mathematics is quantitative. It is anticipated at this time that the exclusively digital nature of rational human intelligence exhibits four flavors of digitality, apparently no more, and that each flavor will require a lengthy study in its own right. (For more information,please refer to the PDF.)
文摘Based on Nida’s Functional Equivalence theory,this article makes an analysis of the problems in C-E translations ofsigns in China.The author will discuss respectively the problematic C-E translations from two respects:1)not being equivalent tosource-language message,and 2)not being natural for target language.If translators work hard with the help of Nida’s functionalequivalence theory,the defects and imperfections will be discovered,and standard signs in English will be read more and more inpublic places.
文摘In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathematical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) (Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generalizations of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked when switching doors after doors have been opened to reveal goats (Monty Hall 3.0;see §4);(3) to the precise conditions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2;see §6);and (4) to any number of switches of doors (s) (Monty Hall 4.0;see §7). The afore-mentioned article in APM, Vol. 1, No. 4 may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the present article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the earlier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the footsteps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelligence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one another. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other disciplines, an effort is made to describe the mathematics more explicitly than is usual.
文摘The Monty Hall problem has received its fair share of attention in mathematics. Recently, an entire monograph has been devoted to its history. There has been a multiplicity of approaches to the problem. These approaches are not necessarily mutually exclusive. The design of the present paper is to add one more approach by analyzing the mathematical structure of the Monty Hall problem in digital terms. The structure of the problem is described as much as possible in the tradition and the spirit—and as much as possible by means of the algebraic conventions—of George Boole’s Investigation of the Laws of Thought (1854), the Magna Charta of the digital age, and of John Venn’s Symbolic Logic (second edition, 1894), which is squarely based on Boole’s Investigation and elucidates it in many ways. The focus is not only on the digital-mathematical structure itself but also on its relation to the presumed digital nature of cognition as expressed in rational thought and language. The digital approach is outlined in part 1. In part 2, the Monty Hall problem is analyzed digitally. To ensure the generality of the digital approach and demonstrate its reliability and productivity, the Monty Hall problem is extended and generalized in parts 3 and 4 to related cases in light of the axioms of probability theory. In the full mapping of the mathematical structure of the Monty Hall problem and any extensions thereof, a digital or non-quantitative skeleton is fleshed out by a quantitative component. The pertinent mathematical equations are developed and presented and illustrated by means of examples.