In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equa...In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.展开更多
This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for appli...This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.展开更多
Focusing on the exploration of symmetry and conservation laws in event space, this paper studies Noether theorems of Herglotz-type for nonconservative Hamilton system. Herglotz’s generalized variational principle is ...Focusing on the exploration of symmetry and conservation laws in event space, this paper studies Noether theorems of Herglotz-type for nonconservative Hamilton system. Herglotz’s generalized variational principle is first extended to event space,and on this basis, Hamilton equations of Herglotz-type in event space are derived. The invariance of Hamilton-Herglotz action is then studied by introducing infinitesimal transformation, and the definition of Herglotz-type Noether symmetry in event space is given, and its criterion is derived. Noether theorem of Herglotz-type and its inverse for event space nonconservative Hamilton system are proved. The application of Herglotz-type Noether theorem we obtained is introduced by taking Emden-Fowler equation and linearly damped oscillator as examples.展开更多
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
基金Project supported by the National Natural Science Foundation of China(Nos.11172334 and11202247)the Fundamental Research Funds for the Central Universities(No.2013390003161292)
文摘This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.
基金Supported by the National Natural Science Foundation of China (11972241, 11572212)the Natural Science Foundation of Jiangsu Province (BK20191454)。
文摘Focusing on the exploration of symmetry and conservation laws in event space, this paper studies Noether theorems of Herglotz-type for nonconservative Hamilton system. Herglotz’s generalized variational principle is first extended to event space,and on this basis, Hamilton equations of Herglotz-type in event space are derived. The invariance of Hamilton-Herglotz action is then studied by introducing infinitesimal transformation, and the definition of Herglotz-type Noether symmetry in event space is given, and its criterion is derived. Noether theorem of Herglotz-type and its inverse for event space nonconservative Hamilton system are proved. The application of Herglotz-type Noether theorem we obtained is introduced by taking Emden-Fowler equation and linearly damped oscillator as examples.