We use Hopf-Lax formula to study local regularity of solution to Hamilton- Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution...We use Hopf-Lax formula to study local regularity of solution to Hamilton- Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution to HJ equation, i.e. for most initial data there exists a constant T 〉 0, which depends only on the Hamiltonian and initial datum, for t 〉 T the solution of the IVP (1.1) is smooth except for ~ smooth n-dimensional hypersurface, across which Du(x, t) is discontinuous. And we show that the hypersurface 1 tends asymptotically to a given hypersurface with rate t-1/4.展开更多
基金supported by National Natural Science Foundation of China (10871133,11071246 and 11101143)Fundamental Research Funds of the Central Universities (09QL48)
文摘We use Hopf-Lax formula to study local regularity of solution to Hamilton- Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution to HJ equation, i.e. for most initial data there exists a constant T 〉 0, which depends only on the Hamiltonian and initial datum, for t 〉 T the solution of the IVP (1.1) is smooth except for ~ smooth n-dimensional hypersurface, across which Du(x, t) is discontinuous. And we show that the hypersurface 1 tends asymptotically to a given hypersurface with rate t-1/4.