The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope...The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. ne frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild-slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff, Kirby's mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.展开更多
文摘The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. ne frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild-slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff, Kirby's mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.