The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a mult...The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method.展开更多
The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-...The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.展开更多
Passive intermodulation(PIM)interference urgently needs to be solved in the satellite communication system,owing to degrading the whole performance.Mainstream research contributions to the cancellation method for PIM ...Passive intermodulation(PIM)interference urgently needs to be solved in the satellite communication system,owing to degrading the whole performance.Mainstream research contributions to the cancellation method for PIM were focused on the analog domain,however,the PIM distortion cannot be eliminated completely with the approaches.Meanwhile,some researchers attempt to tackle the problem through digital signal processing,nevertheless,the proposed methods were not suitable for the practical satellite communication scenario.In this paper,we present a general scheme for the adaptive feedforward PIM cancellation.High-order PIM signals at baseband are estimated by modeling the PIM distortion with Hammerstein model in the digital domain.Based on the reconstructed PIM signal,we adopt the least mean square algorithm to adaptively mitigate the PIM interference for tracking the variation of PIM.The time and frequency synchronization of PIM are based on the correlation of the peak of received signals with the corresponding reconstructed PIM signal.Practical experimental results show that the scheme can effectively cancel the PIM interference,and achieve an interference suppression gain more than 20dB.展开更多
A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in tr...A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.展开更多
An algorithm based on mixed signals is proposed,to solve the issues of low accuracy of identification algorithm,immeasurable intermediate variables of fractional order Hammerstein model,and how to determine the magnit...An algorithm based on mixed signals is proposed,to solve the issues of low accuracy of identification algorithm,immeasurable intermediate variables of fractional order Hammerstein model,and how to determine the magnitude of fractional order.In this paper,a special mixed input signal is designed to separate the nonlinear and linear parts of the fractional order Hammerstein model so that each part can be identified independently.The nonlinear part is fitted by the neural fuzzy network model,which avoids the limitation of polynomial fitting and broadens the application range of nonlinear models.In addition,the multi-innovation Levenberg-Marquardt(MILM)algorithm and auxiliary recursive least square algorithm are innovatively integrated into the parameter identification algorithm of the fractional order Hammerstein model to obtain more accurate identification results.A simulation example is given to verify the accuracy and effectiveness of the proposed method.展开更多
This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method ...This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.展开更多
Purpose-The purpose of this paper is to probe the recursive identification of piecewise affine Hammerstein models directly by using input-output data.To explain the identification process of a parametric piecewise aff...Purpose-The purpose of this paper is to probe the recursive identification of piecewise affine Hammerstein models directly by using input-output data.To explain the identification process of a parametric piecewise affine nonlinear function,the authors prove that the inverse function corresponding to the given piecewise affine nonlinear function is also an equivalent piecewise affine form.Based on this equivalent property,during the detailed identification process with respect to piecewise affine function and linear dynamical system,three recursive least squares methods are proposed to identify those unknown parameters under the probabilistic description or bounded property of noise.Design/methodology/approach-First,the basic recursive least squares method is used to identify those unknown parameters under the probabilistic description of noise.Second,multi-innovation recursive least squares method is proposed to improve the efficiency lacked in basic recursive least squares method.Third,to relax the strict probabilistic description on noise,the authors provide a projection algorithm with a dead zone in the presence of bounded noise and analyze its two properties.Findings-Based on complex mathematical derivation,the inverse function of a given piecewise affine nonlinear function is also an equivalent piecewise affine form.As the least squares method is suited under one condition that the considered noise may be a zero mean random signal,a projection algorithm with a dead zone in the presence of bounded noise can enhance the robustness in the parameter update equation.Originality/value-To the best knowledge of the authors,this is the first attempt at identifying piecewise affine Hammerstein models,which combine a piecewise affine function and a linear dynamical system.In the presence of bounded noise,the modified recursive least squares methods are efficient in identifying two kinds of unknown parameters,so that the common set membership method can be replaced by the proposed methods.展开更多
The modeling of distillation column process is a very challenging problem because of the complex dynamic behavior.This paper investigates a Nonlinear Autoregressive Moving Average with eXogenous input(NARMAX)model,and...The modeling of distillation column process is a very challenging problem because of the complex dynamic behavior.This paper investigates a Nonlinear Autoregressive Moving Average with eXogenous input(NARMAX)model,and a Hammerstein model to approximate the evolution of the overhead temperature in a separation system.The model development and validation are studied through experiments carried out on a distillation plant of laboratory scale.Three model order selection criteria such as Aikeke’s Information Criterion(AIC),Root Mean Square Error(RMSE)and Nash–Sutcliffe Efficiency(NSE)are used to evaluate the prediction performance of the process behavior.The results illustrate that both models produce acceptable predictions but the NARMAX model outperforms the Hammerstein model.展开更多
Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to ...Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.展开更多
In acs paper,the generalized predictive control(GPC)law for Hammerstein model with control horizon NU=1 is presented and the algebraic equation satisfied by the GPC law is derived.Also,the simulation study shows tha t...In acs paper,the generalized predictive control(GPC)law for Hammerstein model with control horizon NU=1 is presented and the algebraic equation satisfied by the GPC law is derived.Also,the simulation study shows tha tthe GPC based on Hammerstein system is such and algorithm which can be controlled by numerical computer with rather strong Robustness but without strict demand for the model.展开更多
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea...Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.展开更多
利用Hammerstein模型对超磁致伸缩作动器(Giant magnetostrictive actuators,GMA)的率相关迟滞非线性进行建模,分别以改进的Prandtl-Ishlinskii(Modified Prandtl-Ishlinskii)模型和外因输入自回归模型(Autoregressive model with exoge...利用Hammerstein模型对超磁致伸缩作动器(Giant magnetostrictive actuators,GMA)的率相关迟滞非线性进行建模,分别以改进的Prandtl-Ishlinskii(Modified Prandtl-Ishlinskii)模型和外因输入自回归模型(Autoregressive model with exogenous input,ARX)代表Hammerstein模型中的静态非线性部分和线性动态部分,并给出了模型的辨识方法.此模型能在1~100Hz频率范围内较好地描述GMA的率相关迟滞非线性.提出了带有逆补偿器和H∞鲁棒控制器的二自由度跟踪控制策略,实时跟踪控制实验结果证明了所提策略的有效性.展开更多
文摘The identification problem of Hammerstein model with extension to the multi input multi output (MIMO) case is studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi layer feed forward neural network (MFNN) in cascade with a linear neural network (LNN). A unified back propagation (BP) algorithm is proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided to show the efficiency of the proposed method.
基金Project supported by the National Natural Science Foundation of China (No. 60572055)the Natural Science Foundation of Guangxi Province (No. 0339068), China
文摘The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.
基金financially supported by the Joint Fund of NSFC and the General Purpose Technology Research Program under the contract U1636125,NSFC under the contract U1836201
文摘Passive intermodulation(PIM)interference urgently needs to be solved in the satellite communication system,owing to degrading the whole performance.Mainstream research contributions to the cancellation method for PIM were focused on the analog domain,however,the PIM distortion cannot be eliminated completely with the approaches.Meanwhile,some researchers attempt to tackle the problem through digital signal processing,nevertheless,the proposed methods were not suitable for the practical satellite communication scenario.In this paper,we present a general scheme for the adaptive feedforward PIM cancellation.High-order PIM signals at baseband are estimated by modeling the PIM distortion with Hammerstein model in the digital domain.Based on the reconstructed PIM signal,we adopt the least mean square algorithm to adaptively mitigate the PIM interference for tracking the variation of PIM.The time and frequency synchronization of PIM are based on the correlation of the peak of received signals with the corresponding reconstructed PIM signal.Practical experimental results show that the scheme can effectively cancel the PIM interference,and achieve an interference suppression gain more than 20dB.
基金National Natural Science Foundation of China(No.61374044)Shanghai Municipal Science and Technology Commission,China(No.15510722100)+2 种基金Shanghai Municipal Education Commission,China(No.14ZZ088)Shanghai Talent Development Plan,ChinaShanghai Baoshan Science and Technology Commission,China(No.bkw2013120)
文摘A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.
基金National Natural Science Foundation of China[grant number 61863034].
文摘An algorithm based on mixed signals is proposed,to solve the issues of low accuracy of identification algorithm,immeasurable intermediate variables of fractional order Hammerstein model,and how to determine the magnitude of fractional order.In this paper,a special mixed input signal is designed to separate the nonlinear and linear parts of the fractional order Hammerstein model so that each part can be identified independently.The nonlinear part is fitted by the neural fuzzy network model,which avoids the limitation of polynomial fitting and broadens the application range of nonlinear models.In addition,the multi-innovation Levenberg-Marquardt(MILM)algorithm and auxiliary recursive least square algorithm are innovatively integrated into the parameter identification algorithm of the fractional order Hammerstein model to obtain more accurate identification results.A simulation example is given to verify the accuracy and effectiveness of the proposed method.
基金Projects(61573052,61273132)supported by the National Natural Science Foundation of China
文摘This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.
文摘Purpose-The purpose of this paper is to probe the recursive identification of piecewise affine Hammerstein models directly by using input-output data.To explain the identification process of a parametric piecewise affine nonlinear function,the authors prove that the inverse function corresponding to the given piecewise affine nonlinear function is also an equivalent piecewise affine form.Based on this equivalent property,during the detailed identification process with respect to piecewise affine function and linear dynamical system,three recursive least squares methods are proposed to identify those unknown parameters under the probabilistic description or bounded property of noise.Design/methodology/approach-First,the basic recursive least squares method is used to identify those unknown parameters under the probabilistic description of noise.Second,multi-innovation recursive least squares method is proposed to improve the efficiency lacked in basic recursive least squares method.Third,to relax the strict probabilistic description on noise,the authors provide a projection algorithm with a dead zone in the presence of bounded noise and analyze its two properties.Findings-Based on complex mathematical derivation,the inverse function of a given piecewise affine nonlinear function is also an equivalent piecewise affine form.As the least squares method is suited under one condition that the considered noise may be a zero mean random signal,a projection algorithm with a dead zone in the presence of bounded noise can enhance the robustness in the parameter update equation.Originality/value-To the best knowledge of the authors,this is the first attempt at identifying piecewise affine Hammerstein models,which combine a piecewise affine function and a linear dynamical system.In the presence of bounded noise,the modified recursive least squares methods are efficient in identifying two kinds of unknown parameters,so that the common set membership method can be replaced by the proposed methods.
文摘The modeling of distillation column process is a very challenging problem because of the complex dynamic behavior.This paper investigates a Nonlinear Autoregressive Moving Average with eXogenous input(NARMAX)model,and a Hammerstein model to approximate the evolution of the overhead temperature in a separation system.The model development and validation are studied through experiments carried out on a distillation plant of laboratory scale.Three model order selection criteria such as Aikeke’s Information Criterion(AIC),Root Mean Square Error(RMSE)and Nash–Sutcliffe Efficiency(NSE)are used to evaluate the prediction performance of the process behavior.The results illustrate that both models produce acceptable predictions but the NARMAX model outperforms the Hammerstein model.
基金This project is supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22_0124)the National Natural Science Foundation of China(NO.61374153).
文摘Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.
文摘In acs paper,the generalized predictive control(GPC)law for Hammerstein model with control horizon NU=1 is presented and the algebraic equation satisfied by the GPC law is derived.Also,the simulation study shows tha tthe GPC based on Hammerstein system is such and algorithm which can be controlled by numerical computer with rather strong Robustness but without strict demand for the model.
基金National Natural Science Foundation of China(No.61374044)Shanghai Science Technology Commission,China(Nos.15510722100,16111106300)
文摘Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.
文摘利用Hammerstein模型对超磁致伸缩作动器(Giant magnetostrictive actuators,GMA)的率相关迟滞非线性进行建模,分别以改进的Prandtl-Ishlinskii(Modified Prandtl-Ishlinskii)模型和外因输入自回归模型(Autoregressive model with exogenous input,ARX)代表Hammerstein模型中的静态非线性部分和线性动态部分,并给出了模型的辨识方法.此模型能在1~100Hz频率范围内较好地描述GMA的率相关迟滞非线性.提出了带有逆补偿器和H∞鲁棒控制器的二自由度跟踪控制策略,实时跟踪控制实验结果证明了所提策略的有效性.