This paper discusses the coordination process for a robot gripper to approach a movingobject with feedback from an uncalibrated visual system. The dynamic of the whole system, includingtarget's random motion and t...This paper discusses the coordination process for a robot gripper to approach a movingobject with feedback from an uncalibrated visual system. The dynamic of the whole system, includingtarget's random motion and the gripper's tracking motion, is bounded to a 2-D working plane. Acamera, whose relations with the robot system and the 2-D working plane are unknown to the robotcontroller, is fixed aside to observe the object and gripper positions continually. Thus the movementsof the robot gripper can be decided on the positions of the object observed in each visual samplingmoment. The coordination of the vision and robot system is to be shown independently from therelations between the robot and the vision system, which should always be calibrated a prior forthe control of traditional robot/vision coordination system. Simulations are provided to show theproperty of the proposed method.展开更多
文摘This paper discusses the coordination process for a robot gripper to approach a movingobject with feedback from an uncalibrated visual system. The dynamic of the whole system, includingtarget's random motion and the gripper's tracking motion, is bounded to a 2-D working plane. Acamera, whose relations with the robot system and the 2-D working plane are unknown to the robotcontroller, is fixed aside to observe the object and gripper positions continually. Thus the movementsof the robot gripper can be decided on the positions of the object observed in each visual samplingmoment. The coordination of the vision and robot system is to be shown independently from therelations between the robot and the vision system, which should always be calibrated a prior forthe control of traditional robot/vision coordination system. Simulations are provided to show theproperty of the proposed method.