The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of cu...The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.展开更多
Poly(vinylidene fluoride), PVDF, membranes have attracted considerable attention as polymer electrolytes for fuel cells. This study explores the effect of solvent on the spherulite size and the crystallinity of the po...Poly(vinylidene fluoride), PVDF, membranes have attracted considerable attention as polymer electrolytes for fuel cells. This study explores the effect of solvent on the spherulite size and the crystallinity of the polymeric membranes. Based on Hansen solubility parameters theory, the mixture of DMC and DMSO was selected among a dozen of solvents for the preparation of PVDF membranes by thermally induced phase separation. The addition of two protic ionic liquids(PILs), bis(2-ethyl hexyl) ammonium hydrogen phosphate [EHNH_2][H_2PO_4], and imidazolium hexanoate [Im][Hex] to PVDF membranes at concentrations(10% < wP IL< 50%) has been investigated by SEM, FTIR, DSC, TGA, EIS, and DMA. The inclusion of ionic liquids into the polymer matrix influences structural parameters(degree of crystallinity and electroactive phases), thermal stability, proton conductivity and mechanical properties of the membranes. The membranes become transparent regardless type of ionic liquid employed. A small amount of ionic liquids increases the degree of crystallinity and facilitates the production of polar β and γ crystals. The proton conductivity mechanism(Grotthuss) is dependent on the ionic liquid structure(due to its selforganization in water) and the content in the PVDF membrane, as well as the membrane water uptake.Different behavior has been observed for the two ionic liquids, which stresses the challenge on selecting an appropriate cation and anion combination. The obtained composite membranes exhibited excellent mechanical performance and reduced elastic modulus, with respect to the pure polymer matrix. These results indicate that PVDF/IL composite membranes have a high potential for PEMFC applications.展开更多
The supercritical fluid is used extensively, especially in substance extraction. The extraction of many substances has reached the economic-scale industrial bulk production stage. However, the research on the wastewat...The supercritical fluid is used extensively, especially in substance extraction. The extraction of many substances has reached the economic-scale industrial bulk production stage. However, the research on the wastewater-free dyeing technique replacing water as dissolvent is still at a development stage. This study introduced the development situation of supercritical fluid dyeing technique, and described the evolution of stock dyeing, measurement of solubility of dye, studies of dyeing kinetics and instrument application studies, in order to provide related data for relevant studies in further development of this technique.展开更多
For most particle-based applications, formulation in the liquid phase is a decisive step, and thus, particle interactions and stability in liquid media are of major importance. The concept of Hansen solubility paramet...For most particle-based applications, formulation in the liquid phase is a decisive step, and thus, particle interactions and stability in liquid media are of major importance. The concept of Hansen solubility parameters (HSP) was initially invented to describe the interactions of (polymer) molecules and their solubility in different liquids and is increasingly being used in particle technology to describe dispersibility. Because dispersions are not thermodynamically stable, the term Hansen dispersibility parameters (HDP) is used instead of HSP (SiiE, Sobisch, Peukert, Lerche,& Segets, 2018). Herein, we extend a previously developed standardized and non-subjective method for determination of Hansen parameters based on analytical centrifugation to the important class of quantum materials. As a technically relevant model system, zinc oxide quantum dots (QDs) were used to transfer our methodology to nanoparticles (NPs) with sizes below lOnm. The results obtained using the standard procedure starting from a dried powder were compared with those obtained through redispersion from the wet sediment produced during the typical washing procedure of QDs, and drying was observed to play an important role. In conclusion, our study reveals the high potential of HDP for quantifying the interfacial properties of NPs as well as their link to dispersibility.展开更多
Doping lignin with carbon nanotubes is a promising strategy for cost-effective high-performance carbon fibers.We investigate the intermolecular interaction potential of CNT and organosolv lignin with two main approach...Doping lignin with carbon nanotubes is a promising strategy for cost-effective high-performance carbon fibers.We investigate the intermolecular interaction potential of CNT and organosolv lignin with two main approaches.Experimentally,oxidized purified multiwalled carbon nanotubes(MWCNTs)and beech organosolv lignins and derivatives are analyzed with their Hansen solubility parameters(HSPs)to assess their mutual compatibility.Theoretically,dispersion-corrected density functional theory simulations of the interaction between model molecules and single-walled carbon nanotubes reveal the source of interactions.We find that oxidation enables and enhances the interaction between carbon nanotubes and organosolv lignin experimentally,which is in agreement with the enhanced polar interaction found in the simulations.展开更多
基金Financial support from the Sino-Danish Center for Education and Research(SDC)the Hempel Foundation to CoaST(The Hempel Foundation Coatings Science and Technology Centre)Hempel A/S。
文摘The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.
基金“La region Centre Val de Loire” for financial support to the researchers involved in this study under “Lavoisier II” regional program。
文摘Poly(vinylidene fluoride), PVDF, membranes have attracted considerable attention as polymer electrolytes for fuel cells. This study explores the effect of solvent on the spherulite size and the crystallinity of the polymeric membranes. Based on Hansen solubility parameters theory, the mixture of DMC and DMSO was selected among a dozen of solvents for the preparation of PVDF membranes by thermally induced phase separation. The addition of two protic ionic liquids(PILs), bis(2-ethyl hexyl) ammonium hydrogen phosphate [EHNH_2][H_2PO_4], and imidazolium hexanoate [Im][Hex] to PVDF membranes at concentrations(10% < wP IL< 50%) has been investigated by SEM, FTIR, DSC, TGA, EIS, and DMA. The inclusion of ionic liquids into the polymer matrix influences structural parameters(degree of crystallinity and electroactive phases), thermal stability, proton conductivity and mechanical properties of the membranes. The membranes become transparent regardless type of ionic liquid employed. A small amount of ionic liquids increases the degree of crystallinity and facilitates the production of polar β and γ crystals. The proton conductivity mechanism(Grotthuss) is dependent on the ionic liquid structure(due to its selforganization in water) and the content in the PVDF membrane, as well as the membrane water uptake.Different behavior has been observed for the two ionic liquids, which stresses the challenge on selecting an appropriate cation and anion combination. The obtained composite membranes exhibited excellent mechanical performance and reduced elastic modulus, with respect to the pure polymer matrix. These results indicate that PVDF/IL composite membranes have a high potential for PEMFC applications.
文摘The supercritical fluid is used extensively, especially in substance extraction. The extraction of many substances has reached the economic-scale industrial bulk production stage. However, the research on the wastewater-free dyeing technique replacing water as dissolvent is still at a development stage. This study introduced the development situation of supercritical fluid dyeing technique, and described the evolution of stock dyeing, measurement of solubility of dye, studies of dyeing kinetics and instrument application studies, in order to provide related data for relevant studies in further development of this technique.
文摘For most particle-based applications, formulation in the liquid phase is a decisive step, and thus, particle interactions and stability in liquid media are of major importance. The concept of Hansen solubility parameters (HSP) was initially invented to describe the interactions of (polymer) molecules and their solubility in different liquids and is increasingly being used in particle technology to describe dispersibility. Because dispersions are not thermodynamically stable, the term Hansen dispersibility parameters (HDP) is used instead of HSP (SiiE, Sobisch, Peukert, Lerche,& Segets, 2018). Herein, we extend a previously developed standardized and non-subjective method for determination of Hansen parameters based on analytical centrifugation to the important class of quantum materials. As a technically relevant model system, zinc oxide quantum dots (QDs) were used to transfer our methodology to nanoparticles (NPs) with sizes below lOnm. The results obtained using the standard procedure starting from a dried powder were compared with those obtained through redispersion from the wet sediment produced during the typical washing procedure of QDs, and drying was observed to play an important role. In conclusion, our study reveals the high potential of HDP for quantifying the interfacial properties of NPs as well as their link to dispersibility.
文摘Doping lignin with carbon nanotubes is a promising strategy for cost-effective high-performance carbon fibers.We investigate the intermolecular interaction potential of CNT and organosolv lignin with two main approaches.Experimentally,oxidized purified multiwalled carbon nanotubes(MWCNTs)and beech organosolv lignins and derivatives are analyzed with their Hansen solubility parameters(HSPs)to assess their mutual compatibility.Theoretically,dispersion-corrected density functional theory simulations of the interaction between model molecules and single-walled carbon nanotubes reveal the source of interactions.We find that oxidation enables and enhances the interaction between carbon nanotubes and organosolv lignin experimentally,which is in agreement with the enhanced polar interaction found in the simulations.