期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mixed-Weights Least-Squares Stable Predictive Control Algorithm with Soft and Hard Constraints 被引量:3
1
作者 周立芳 邵之江 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期565-570,共6页
Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in... Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective. 展开更多
关键词 mixed-weight least-squares predictive control soft constraints hard constraints FEASIBILITY
下载PDF
A new method to solve the Reynolds equation including mass-conserving cavitation by physics informed neural networks(PINNs)with both soft and hard constraints
2
作者 Yinhu XI Jinhui DENG Yiling LI 《Friction》 SCIE EI CAS CSCD 2024年第6期1165-1175,共11页
In this work,a new method to solve the Reynolds equation including mass-conserving cavitation by using the physics informed neural networks(PINNs)is proposed.The complementarity relationship between the pressure and t... In this work,a new method to solve the Reynolds equation including mass-conserving cavitation by using the physics informed neural networks(PINNs)is proposed.The complementarity relationship between the pressure and the void fraction is used.There are several difficulties in problem solving,and the solutions are provided.Firstly,the difficulty for considering the pressure inequality constraint by PINNs is solved by transferring it into one equality constraint without introducing error.While the void fraction inequality constraint is considered by using the hard constraint with the max-min function.Secondly,to avoid the fluctuation of the boundary value problems,the hard constraint method is also utilized to apply the boundary pressure values and the corresponding functions are provided.Lastly,for avoiding the trivial solution the limitation for the mean value of the void fraction is applied.The results are validated against existing data,and both the incompressible and compressible lubricant are considered.Good agreement can be found for both the domain and domain boundaries. 展开更多
关键词 Reynolds equation mass-conserving cavitation physics informed neural networks hard constraints trivial solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部