期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of Air Pressure on Hardened Layer of U75V 60 kg/m Heavy Rail after Heat Treatment 被引量:3
1
作者 Hao Kang Xian-Ming Zhao Di Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第1期52-56,共5页
The samples cut from U75V 60 kg/m heavy rail are heated to 900 ℃ in resistance furnace and then put into air spraying channel to be cooled for 80 s, and change air pressure from 0.16 MPa to 0.33 MPa, and observe the ... The samples cut from U75V 60 kg/m heavy rail are heated to 900 ℃ in resistance furnace and then put into air spraying channel to be cooled for 80 s, and change air pressure from 0.16 MPa to 0.33 MPa, and observe the effect of air pressure on hardened layer. The thickness and hardness of hardened layer increases with the increase of air pressure, and the thickness is more than 24 mm at the center and top fillets of rail head, and more than 15 mm at the blow fillets of rail head when air pressure is more than 0.26 MPa. During the tempering after heat treatment, tempering temperature of rail head is more than 570 ℃ when air pressure is separately 0.16 MPa, 0.20 MPa and 0.23 MPa, which is higher than finishing temperature of pearlite transformation at the cooling rate of 3 ℃/s according to CCT curve of U75V steel. When air pressure is separately 0.26, 0.30 and 0.33 MPa, the tempering temperature is 529 ℃ lower than finishing temperature of pearlite transformation at the cooling rate of 3 ℃/s. Under this condition, pearlite transformation is finished totally, so in order to reduce air consumption and control the cost, proper air pressure for U75V 60 kg/m heavy rail heat treating should be 0.26 MPa; the cooling rate increases with the increase of air pressure, and the average cooling rate on the surface of rail head is more than 3.21 ℃/s when air pressure is more than 0.26 MPa, and the largest cooling rate occurs at the top fillets of rail head. 展开更多
关键词 air pressure hardened layer heavy rail heat treatment
下载PDF
Impact toughness of a gradient hardened layer of Cr5Mo1V steel treated by laser shock peening 被引量:1
2
作者 Weiguang Xia Lei Li +5 位作者 Yanpeng Wei Aimin Zhao Yacong Guo Chenguang Huang Hongxiang Yin Lingchen Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期301-308,共8页
Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP p... Laser shock peening(LSP) is a widely used surface treatment technique that can effectively improve the fatigue life and impact toughness of metal parts.Cr5Mo1 V steel exhibits a gradient hardened layer after a LSP process.A new method is proposed to estimate the impact toughness that considers the changing mechanical properties in the gradient hardened layer.Assuming a linearly gradient distribution of impact toughness,the parameters controlling the impact toughness of the gradient hardened layer were given.The influence of laser power densities and the number of laser shots on the impact toughness were investigated.The impact toughness of the laser peened layer improves compared with an untreated specimen,and the impact toughness increases with the laser power densities and decreases with the number of laser shots.Through the fracture morphology analysis by a scanning electron microscope,we established that the Cr5Mo1 V steel was fractured by the cleavage fracture mechanism combined with a few dimples.The increase in the impact toughness of the material after LSP is observed because of the decreased dimension and increased fraction of the cleavage fracture in the gradient hardened layer. 展开更多
关键词 Laser shock peening Gradient hardened layer Plastically affected depth Impact toughness Cleavage fracture
下载PDF
Combination of cold drawing and cryogenic turning for modifying surface morphology of metastable austenitic AISI 347 steel 被引量:1
3
作者 Hendrik Hotz Benjamin Kirsch +2 位作者 Steven Becker Ralf Miiller Jan CAurich 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第11期1188-1198,共11页
The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic stee... The application of components often depends to a large extent on the properties of the surface layer.A novel process chain for the production of components with a hardened surface layer from metastable austenitic steel was presented.The investigated metastable austenitic AISI 347 steel was cold-drawn in solution annealed condition at cryogenic temperatures for pre-hardening,followed by post-hardening via cryogenic turning.The increase in hardness in both processes was due to strain hardening and deformation-induced phase transformation from y-austenite to^-martensite.Cryogenic turning experiments were carried out with solution annealed AISI 347 steel as well as with solution annealed and subsequently cold-drawn AISI 347 steel.The thermomechanical load of the workpiece surface layer during the turning process as well as the resulting surface morphology was characterized.The forces and temperatures were higher in turning the cold-drawn AISI 347 steel than turning the solution annealed AISI 347 steel.After cryogenic turning of the solution annealed material,deformation-induced phase transformation and a significant increase in hardness were detected in the near-surface layer.In contrast,no additional phase transformation was observed after cryogenic turning of the cold-drawn AISI 347 steel.The maximum hardness in the surface layer was similar,whereas the hardness in the core of the cold-drawn AISI 347 steel was higher compared to that in the solution annealed AISI 347 steel. 展开更多
关键词 Surface layer hardening Cryogenic turning Cold drawing Metastable austenitic steel Deformation-induced phase transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部