期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Decoupling of temporal/spatial broadening effects in Doppler wind LiDAR by 2D spectral analysis
1
作者 刘珍 张云鹏 +3 位作者 竹孝鹏 刘继桥 毕德仓 陈卫标 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期447-452,共6页
Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and freque... Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed. 展开更多
关键词 Doppler wind LiDAR spectral analysis hardware efficiency spectrum broadening effects
下载PDF
Design and Efficient Hardware Implementation Schemes for Non-Quasi-Cyclic LDPC Codes 被引量:2
2
作者 Baihong Lin Yukui Pei +1 位作者 Liuguo Yin Jianhua Lu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第1期92-103,共12页
The design of a high-speed decoder using traditional partly parallel architecture for Non-Quasi-Cyclic(NQC) Low-Density Parity-Check(LDPC) codes is a challenging problem due to its high memory-block cost and low h... The design of a high-speed decoder using traditional partly parallel architecture for Non-Quasi-Cyclic(NQC) Low-Density Parity-Check(LDPC) codes is a challenging problem due to its high memory-block cost and low hardware utilization efficiency. In this paper, we present efficient hardware implementation schemes for NQCLDPC codes. First, we propose an implementation-oriented construction scheme for NQC-LDPC codes to avoid memory-access conflict in the partly parallel decoder. Then, we propose a Modified Overlapped Message-Passing(MOMP) algorithm for the hardware implementation of NQC-LDPC codes. This algorithm doubles the hardware utilization efficiency and supports a higher degree of parallelism than that used in the Overlapped Message Passing(OMP) technique proposed in previous works. We also present single-core and multi-core decoder architectures in the proposed MOMP algorithm to reduce memory cost and improve circuit efficiency. Moreover, we introduce a technique called the cycle bus to further reduce the number of block RAMs in multi-core decoders. Using numerical examples, we show that, for a rate-2/3, length-15360 NQC-LDPC code with 8.43-d B coding gain for Binary PhaseShift Keying(BPSK) in an Additive White Gaussian Noise(AWGN) channel, the decoder with the proposed scheme achieves a 23.8%–52.6% reduction in logic utilization per Mbps and a 29.0%–90.0% reduction in message-memory bits per Mbps. 展开更多
关键词 Non-Quasi-Cyclic(NQC) Low-Density Parity-Check(LDPC) codes decoder design Modified Overlapped Message Passing(MOMP) algorithm hardware utilization efficiency
原文传递
Area-efficient analog decoder design for low density parity check codes in deep-space applications
3
作者 Zhao Zhe Gao Fei +1 位作者 Zheng Hao Yin Xue 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2017年第4期69-75,共7页
Area-efficient design methodology is proposed for the analog decoding implementations of the rate-l/2 accumulate repeat-4 jagged-accumulate (AR4JA) low density parity check (LDPC) code. The proposed approach is de... Area-efficient design methodology is proposed for the analog decoding implementations of the rate-l/2 accumulate repeat-4 jagged-accumulate (AR4JA) low density parity check (LDPC) code. The proposed approach is designed using optimized decoding architecture and regularized routing network, in such a way that the overall wiring overhead is minimized and the silicon area utilization is significantly improved. The prototyping chip used to verily the approach is tully integrated in a four-metal double-poly 0.35 lam complementary metal oxide semiconductor (CMOS) technology, and includes an input-output interface that maximizes the decoder throughput. The decoding core area is 2.02 mm2 with a post-layout area utilization of 80%. The decoder was successfully tested at the maximum data rate of 10 Mbit/s, with a core power consumption of 6.78 mW at 3.3 V, which corresponds to an energy per decoded bit of 0.677 nJ. The proposed analog LDPC decoder with low processing power and high-reliability is suitable lbr space- and power-constrained spacecraft system. 展开更多
关键词 low density parity check (LDPC) code analog decoding iterative message-passing algorithms hardware efficient area utilization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部