Micro-mobile heat pipe-cooled nuclear power plants are promising candidates for distributed energy resource power genera-tors and can be flexibly deployed in remote places to meet increasing electric power demands.How...Micro-mobile heat pipe-cooled nuclear power plants are promising candidates for distributed energy resource power genera-tors and can be flexibly deployed in remote places to meet increasing electric power demands.However,previous steady-state simulations and experiments have deviated significantly from actual micronuclear system operations.Hence,a transient analysis is required for performance optimization and safety assessment.In this study,a hardware-in-the-loop(HIL)approach was used to investigate the dynamic behavior of scaled-down heat pipe-cooled systems.The real-time features of the HIL architecture were interpreted and validated,and an optimal time step of 500 ms was selected for the thermal transient.The power transient was modeled using point kinetic equations,and a scaled-down thermal prototype was set up to avoid mod-eling unpredictable heat transfer behaviors and feeding temperature samples into the main program running on a desktop PC.A series of dynamic test results showed significant power and temperature oscillations during the transient process,owing to the inconsistency of the rapid nuclear reaction rate and large thermal inertia.The proposed HIL approach is stable and effective for further studying of the dynamic characteristics and control optimization of solid-state small nuclear-powered systems at an early prototyping stage.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to subs...Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.展开更多
Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the p...Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.展开更多
Based on traditional continuous control strategy for Continuously Variable Transmission(CVT)ratio,according to the principles of shift control strategy for stepped automatic transmission,the influences of throttle ope...Based on traditional continuous control strategy for Continuously Variable Transmission(CVT)ratio,according to the principles of shift control strategy for stepped automatic transmission,the influences of throttle opening and external resistance or vehicle speed on CVT ratio control are analyzed on bumpy road.Under the same variation of external resistance condition,the differences between optimal economic control strategy and optimal dynamic control strategy are discussed.Then,the traditional continuous optimal dynamic and economic control lines are divided into multi-step upshift points.Meanwhile,the corresponding downshift points are set to avoid the interference near shift points.After that,the novel discretized ratio control methods for CVT system are proposed.By respectively discretizing throttle opening and vehicle speed,the discretized ratio control strategy for throttle opening,and the integrated discretized ratio control strategy for throttle opening and vehicle speed are further proposed and simulated.Furthermore,the hardware-in-the-loop(HIL)test system is built to further verify the feasibility and accuracy of discretized ratio control strategies.Both simulation and HIL test results show that the sensitivity of throttle opening and vehicle speed to ratio control is reduced dramatically,the fluctuation of ratio is decreased considerably,the transmission efficiency is increased significantly,and the jerk is declined moderately.展开更多
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an ...The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.展开更多
Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representat...Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses...In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.展开更多
In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,es...In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,especially in the case of very soft clays under low stresses.Pore pressures were monitored during probe installation and were found to be slightly lower than piezocone u2 pore pressures,consistent with the position of the filter.The role of filter tip saturation was investigated after the usual saturation procedure provided an unsatisfactory pore pressure response during probe installation.Results show that the vacuum saturation procedure provides adequate response during installation and increases the reliability of the coefficient of permeability determination in early measurements.Both inflow and outflow tests yielded similar results,indicating that careful execution of the test can lead to good test repeatability regardless of the loading condition.Various sequences of alternated inflow and outflow tests have yielded similar results,indicating that soil reconsolidation and filter clogging were negligible in the tests performed.Data are presented concerning the relationship between index parameters and the in situ coefficient of permeability for SarapuíII clay,which plot outside the range of existing databases.展开更多
Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount impo...Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.展开更多
Objective:Serological tests are widely used for scrub typhus diagnosis;however,their limitations are evident.This study aims to assess their practical value in clinical settings.Methods:We analyzed the data of adult p...Objective:Serological tests are widely used for scrub typhus diagnosis;however,their limitations are evident.This study aims to assess their practical value in clinical settings.Methods:We analyzed the data of adult patients with suspected scrub typhus who visited a tertiary care hospital in the Republic of Korea from September to December from 2019 to 2021.The included patients had an acute fever and at least one of the following ten secondary findings:myalgia,skin rash,eschar,headache,thrombocytopenia,increased liver enzyme levels,lymphadenopathy,hepatomegaly,splenomegaly,and pleural effusion.The diagnoses were grouped as scrub typhus or other diseases by two infectious disease physicians.Results:Among 136 patients who met the eligibility criteria,109 had scrub typhus and 27 had different diseases.Single and paired total antibodies using immunofluorescence assay(IFA),and total antibodies using immunochromatography-based rapid diagnostic testing(ICT)were measured in 98%,22%,and 75%of all patients,respectively.Confirmation using paired samples for scrub typhus was established at a median of 11[interquartile range(IQR)10-16]days following the first visit.Among the 82 admitted patients,the median admission time was 9(IQR 7-13)days.According to IFA,58(55%)patients with scrub typhus had total immunoglobulin titers≥1:320,while 23(85%)patients with other disease had titers<1:320.Positive ICT results were observed in 64(74%)patients with scrub typhus and 10(67%)patients with other diseases showed negative ICT results.Conclusions:Serological testing for scrub typhus is currently insufficient for decision-making in clinical practice.展开更多
In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helico...In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helicobacter pylori(H.pylori)infection in humans.It is based on radionuclide-labeled urea.Various methods,both invasive and non-invasive,are available for diagnosing H.pylori infection,inclu-ding endoscopy with biopsy,serology for immunoglobulin titers,stool antigen analysis,and UBT.Several guidelines recommend UBTs as the primary choice for diagnosing H.pylori infection and for reexamining after eradication therapy.It is used to be the first choice non-invasive test due to their high accuracy,specificity,rapid results,and simplicity.Moreover,its performance remains unaffected by the distribution of H.pylori in the stomach,allowing a high flow of patients to be tested.Despite its widespread use,the performance characteristics of UBT have been inconsistently described and remain incompletely defined.There are two UBTs available with Food and Drug Administration approval:The 13C and 14C tests.Both tests are affordable and can provide real-time results.Physicians may prefer the 13C test because it is non-radioactive,compared to 14C which uses a radioactive isotope,especially in young children and pregnant women.Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs,13C-UBT consistently outperforms the 14C-UBT.This makes the 13C-UBT the preferred diagnostic approach.Furthermore,the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage,assessment timing,and measurement techniques for both the 13C-UBT and 14C-UBT,to enhance diagnostic precision.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for...BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for detecting H.pylori.Despite numerous studies confirming its substantial accuracy,the reliability of UBT results is often compromised by inherent limitations.These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H.pylori infection.AIM To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H.pylori infection in adult patients with dyspepsia.METHODS We conducted an independent search of the PubMed/MEDLINE,EMBASE,and Cochrane Central databases until April 2022.Our search included diagnostic accuracy studies that evaluated at least one of the index tests(^(13)C-UBT or ^(14)C-UBT)against a reference standard.We used the QUADAS-2 tool to assess the methodo-logical quality of the studies.We utilized the bivariate random-effects model to calculate sensitivity,specificity,positive and negative test likelihood ratios(LR+and LR-),as well as the diagnostic odds ratio(DOR),and their 95%confidence intervals.We conducted subgroup analyses based on urea dosing,time after urea administration,and assessment technique.To investigate a possible threshold effect,we conducted Spearman correlation analysis,and we generated summary receiver operating characteristic(SROC)curves to assess heterogeneity.Finally,we visually inspected a funnel plot and used Egger’s test to evaluate publication bias.endorsing both as reliable diagnostic tools in clinical practice.CONCLUSION In summary,our study has demonstrated that ^(13)C-UBT has been found to outperform the ^(14)C-UBT,making it the preferred diagnostic approach.Additionally,our results emphasize the significance of carefully considering urea dosage,assessment timing,and measurement techniques for both tests to enhance diagnostic precision.Nevertheless,it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice.展开更多
Screening for maternal syphilis has been an essential component of routine antenatal screening tests in most countries for many years. This is not only because of the virulence of the spirochete which causes the infec...Screening for maternal syphilis has been an essential component of routine antenatal screening tests in most countries for many years. This is not only because of the virulence of the spirochete which causes the infection but also because of its vertical transmission rate and the potential severe adverse complications/morbidity that can result from its transmission to the fetus. Although the incidence of maternal syphilis and its fetal sequalae in low-income countries has been considerable for several years, the disease has been almost non-existent in high income countries with wide antenatal screening coverage and effective treatment programmes for Syphilis. The recent alarming increase in the incidence of maternal syphilis in high income countries has spawned a renewed public health interest in the infection, with several countries updating and strengthening public health guidance in an attempt to stem this dramatic trend. This is a short clinical update for the practising obstetrician on how to manage the antenatal patient with a positive syphilis screening test.展开更多
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g...The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS.展开更多
基金This work was financially supported by the National Key R&D Program of China(No.2020YFB1901900)National Natural Science Foundation of China(No.12275175)+2 种基金Special Fund for Strengthening Industry of Shanghai(No.GYQJ-2018-2-02)Shanghai Rising Star Program(No.21QA1404200)the LingChuang Research Project of the China National Nuclear Corporation.
文摘Micro-mobile heat pipe-cooled nuclear power plants are promising candidates for distributed energy resource power genera-tors and can be flexibly deployed in remote places to meet increasing electric power demands.However,previous steady-state simulations and experiments have deviated significantly from actual micronuclear system operations.Hence,a transient analysis is required for performance optimization and safety assessment.In this study,a hardware-in-the-loop(HIL)approach was used to investigate the dynamic behavior of scaled-down heat pipe-cooled systems.The real-time features of the HIL architecture were interpreted and validated,and an optimal time step of 500 ms was selected for the thermal transient.The power transient was modeled using point kinetic equations,and a scaled-down thermal prototype was set up to avoid mod-eling unpredictable heat transfer behaviors and feeding temperature samples into the main program running on a desktop PC.A series of dynamic test results showed significant power and temperature oscillations during the transient process,owing to the inconsistency of the rapid nuclear reaction rate and large thermal inertia.The proposed HIL approach is stable and effective for further studying of the dynamic characteristics and control optimization of solid-state small nuclear-powered systems at an early prototyping stage.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
基金supported by National Natural Science Foundation of China(Grant No.50908008)National Hi-tech Research and Development Program of China(863Program,Grant No.2009AA11Z216)
文摘Nowadays validation of anti-lock braking systems(ABS) relies mainly on a large amount of road tests.An alternative means with higher efficiency is employing the hardware-in-the-loop simulation(HILS) system to substitute part of road tests for designing,testing,and tuning electronic control units(ECUs) of ABS.Most HILS systems for ABS use expensive digital signal processor hardware and special purpose software,and some fail-safe functions with regard to wheel speeds cannot be evaluated since artificial wheel speed signals are usually provided.In this paper,a low-cost ABS HILS test bench is developed and used for validating the anti-lock braking performance and tuning control parameters of ABS controllers.Another important merit of the proposed test bench is that it can comprehensively evaluate the fail-safe functions with regard to wheel speed signals since real tone rings and sensors are integrated in the bench.A 5-DOF vehicle model with consideration of longitudinal load transfer is used to calculate tire forces,wheel speeds and vehicle speed.Each of the four real-time wheel speed signal generators consists of a servo motor plus a ring gear,which has sufficient dynamic response ability to emulate the rapid changes of the wheel speeds under strict braking conditions of very slippery roads.The simulation of braking tests under different road adhesion coefficients using the HILS test bench is run,and results show that it can evaluate the anti-lock braking performance of ABS and partly the fail-safe functions.This HILS system can also be used in such applications as durability test,benchmarking and comparison between different ECUs.The test bench developed not only has a relatively low cost,but also can be used to validate the wheel speed-related ECU design and all its fail-safe functions,and a rapid testing and proving platform with a high efficiency for research and development of the automotive ABS is therefore provided.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.
基金This work was supported by National Natural Science Foundation of China(Grant No.51305473)Project Funded by China Postdoctoral Science Foundation(Grant No.2014M552317)+1 种基金Postdoctoral Science Funded Project of Chongqing(Grant No.xm2014032)Foundation and Advanced Research Program General Project of Chongqing City,China(Grant No.cstc2014jcyjA60006).Finally,the authors are grateful to the anonymous reviewers for their helpful comments and constructive suggestions.
文摘Based on traditional continuous control strategy for Continuously Variable Transmission(CVT)ratio,according to the principles of shift control strategy for stepped automatic transmission,the influences of throttle opening and external resistance or vehicle speed on CVT ratio control are analyzed on bumpy road.Under the same variation of external resistance condition,the differences between optimal economic control strategy and optimal dynamic control strategy are discussed.Then,the traditional continuous optimal dynamic and economic control lines are divided into multi-step upshift points.Meanwhile,the corresponding downshift points are set to avoid the interference near shift points.After that,the novel discretized ratio control methods for CVT system are proposed.By respectively discretizing throttle opening and vehicle speed,the discretized ratio control strategy for throttle opening,and the integrated discretized ratio control strategy for throttle opening and vehicle speed are further proposed and simulated.Furthermore,the hardware-in-the-loop(HIL)test system is built to further verify the feasibility and accuracy of discretized ratio control strategies.Both simulation and HIL test results show that the sensitivity of throttle opening and vehicle speed to ratio control is reduced dramatically,the fluctuation of ratio is decreased considerably,the transmission efficiency is increased significantly,and the jerk is declined moderately.
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金This work was supported by the National Natural Science Foundation of China(Nos.12335007,11835001,11921006,12035001 and 12205340)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY13)Gansu Natural Science Foundation(No.22JR5RA123).
文摘The beyond-dripline oxygen isotopes^(27,28)O were recently observed at RIKEN,and were found to be unbound decaying into^(24)O by emitting neutrons.The unbound feature of the heaviest oxygen isotope,^(28)O,provides an excellent test for stateof-the-art nuclear models.The atomic nucleus is a self-organized quantum manybody system comprising specific numbers of protons Z and neutrons N.
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
基金supported by China Postdoctoral Science Foundation(No.2023TQ0247)Shenzhen Science and Technology Program(No.JCYJ20220530140602005)+2 种基金the Fundamental Research Funds for the Central Universities(No.2042023kfyq03)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515111071)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20230544).
文摘Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金supported by the National Natural Science Foundation of China(Nos.51927807,52074164,42277174,42077267 and 42177130)the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)China University of Mining and Technology(Beijing)Top Innovative Talent Cultivation Fund for Doctoral Students(No.BBJ2023048)。
文摘In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.
文摘In situ inflow and outflow permeability tests with the BAT probe at SarapuíII soft clay test site are presented.A description of the BAT permeability test is provided,discussing its advantages and shortcomings,especially in the case of very soft clays under low stresses.Pore pressures were monitored during probe installation and were found to be slightly lower than piezocone u2 pore pressures,consistent with the position of the filter.The role of filter tip saturation was investigated after the usual saturation procedure provided an unsatisfactory pore pressure response during probe installation.Results show that the vacuum saturation procedure provides adequate response during installation and increases the reliability of the coefficient of permeability determination in early measurements.Both inflow and outflow tests yielded similar results,indicating that careful execution of the test can lead to good test repeatability regardless of the loading condition.Various sequences of alternated inflow and outflow tests have yielded similar results,indicating that soil reconsolidation and filter clogging were negligible in the tests performed.Data are presented concerning the relationship between index parameters and the in situ coefficient of permeability for SarapuíII clay,which plot outside the range of existing databases.
文摘Edge devices,due to their limited computational and storage resources,often require the use of compilers for program optimization.Therefore,ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI.One widely used testing method for this purpose is fuzz testing,which detects bugs by inputting random test cases into the target program.However,this process consumes significant time and resources.To improve the efficiency of compiler fuzz testing,it is common practice to utilize test case prioritization techniques.Some researchers use machine learning to predict the code coverage of test cases,aiming to maximize the test capability for the target compiler by increasing the overall predicted coverage of the test cases.Nevertheless,these methods can only forecast the code coverage of the compiler at a specific optimization level,potentially missing many optimization-related bugs.In this paper,we introduce C-CORE(short for Clustering by Code Representation),the first framework to prioritize test cases according to their code representations,which are derived directly from the source codes.This approach avoids being limited to specific compiler states and extends to a broader range of compiler bugs.Specifically,we first train a scaled pre-trained programming language model to capture as many common features as possible from the test cases generated by a fuzzer.Using this pre-trained model,we then train two downstream models:one for predicting the likelihood of triggering a bug and another for identifying code representations associated with bugs.Subsequently,we cluster the test cases according to their code representations and select the highest-scoring test case from each cluster as the high-quality test case.This reduction in redundant testing cases leads to time savings.Comprehensive evaluation results reveal that code representations are better at distinguishing test capabilities,and C-CORE significantly enhances testing efficiency.Across four datasets,C-CORE increases the average of the percentage of faults detected(APFD)value by 0.16 to 0.31 and reduces test time by over 50% in 46% of cases.When compared to the best results from approaches using predicted code coverage,C-CORE improves the APFD value by 1.1% to 12.3% and achieves an overall time-saving of 159.1%.
基金the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(grant no.HI22C0306).
文摘Objective:Serological tests are widely used for scrub typhus diagnosis;however,their limitations are evident.This study aims to assess their practical value in clinical settings.Methods:We analyzed the data of adult patients with suspected scrub typhus who visited a tertiary care hospital in the Republic of Korea from September to December from 2019 to 2021.The included patients had an acute fever and at least one of the following ten secondary findings:myalgia,skin rash,eschar,headache,thrombocytopenia,increased liver enzyme levels,lymphadenopathy,hepatomegaly,splenomegaly,and pleural effusion.The diagnoses were grouped as scrub typhus or other diseases by two infectious disease physicians.Results:Among 136 patients who met the eligibility criteria,109 had scrub typhus and 27 had different diseases.Single and paired total antibodies using immunofluorescence assay(IFA),and total antibodies using immunochromatography-based rapid diagnostic testing(ICT)were measured in 98%,22%,and 75%of all patients,respectively.Confirmation using paired samples for scrub typhus was established at a median of 11[interquartile range(IQR)10-16]days following the first visit.Among the 82 admitted patients,the median admission time was 9(IQR 7-13)days.According to IFA,58(55%)patients with scrub typhus had total immunoglobulin titers≥1:320,while 23(85%)patients with other disease had titers<1:320.Positive ICT results were observed in 64(74%)patients with scrub typhus and 10(67%)patients with other diseases showed negative ICT results.Conclusions:Serological testing for scrub typhus is currently insufficient for decision-making in clinical practice.
文摘In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helicobacter pylori(H.pylori)infection in humans.It is based on radionuclide-labeled urea.Various methods,both invasive and non-invasive,are available for diagnosing H.pylori infection,inclu-ding endoscopy with biopsy,serology for immunoglobulin titers,stool antigen analysis,and UBT.Several guidelines recommend UBTs as the primary choice for diagnosing H.pylori infection and for reexamining after eradication therapy.It is used to be the first choice non-invasive test due to their high accuracy,specificity,rapid results,and simplicity.Moreover,its performance remains unaffected by the distribution of H.pylori in the stomach,allowing a high flow of patients to be tested.Despite its widespread use,the performance characteristics of UBT have been inconsistently described and remain incompletely defined.There are two UBTs available with Food and Drug Administration approval:The 13C and 14C tests.Both tests are affordable and can provide real-time results.Physicians may prefer the 13C test because it is non-radioactive,compared to 14C which uses a radioactive isotope,especially in young children and pregnant women.Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs,13C-UBT consistently outperforms the 14C-UBT.This makes the 13C-UBT the preferred diagnostic approach.Furthermore,the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage,assessment timing,and measurement techniques for both the 13C-UBT and 14C-UBT,to enhance diagnostic precision.
基金Supported by Scientific Initiation Scholarship Programme(PIBIC)of the Bahia State Research Support Foundationthe Doctorate Scholarship Program of the Coordination of Improvement of Higher Education Personnel+1 种基金the Scientific Initiation Scholarship Programme(PIBIC)of the National Council for Scientific and Technological Developmentand the CNPq Research Productivity Fellowship.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection has been well-established as a significant risk factor for several gastrointestinal disorders.The urea breath test(UBT)has emerged as a leading non-invasive method for detecting H.pylori.Despite numerous studies confirming its substantial accuracy,the reliability of UBT results is often compromised by inherent limitations.These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H.pylori infection.AIM To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H.pylori infection in adult patients with dyspepsia.METHODS We conducted an independent search of the PubMed/MEDLINE,EMBASE,and Cochrane Central databases until April 2022.Our search included diagnostic accuracy studies that evaluated at least one of the index tests(^(13)C-UBT or ^(14)C-UBT)against a reference standard.We used the QUADAS-2 tool to assess the methodo-logical quality of the studies.We utilized the bivariate random-effects model to calculate sensitivity,specificity,positive and negative test likelihood ratios(LR+and LR-),as well as the diagnostic odds ratio(DOR),and their 95%confidence intervals.We conducted subgroup analyses based on urea dosing,time after urea administration,and assessment technique.To investigate a possible threshold effect,we conducted Spearman correlation analysis,and we generated summary receiver operating characteristic(SROC)curves to assess heterogeneity.Finally,we visually inspected a funnel plot and used Egger’s test to evaluate publication bias.endorsing both as reliable diagnostic tools in clinical practice.CONCLUSION In summary,our study has demonstrated that ^(13)C-UBT has been found to outperform the ^(14)C-UBT,making it the preferred diagnostic approach.Additionally,our results emphasize the significance of carefully considering urea dosage,assessment timing,and measurement techniques for both tests to enhance diagnostic precision.Nevertheless,it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice.
文摘Screening for maternal syphilis has been an essential component of routine antenatal screening tests in most countries for many years. This is not only because of the virulence of the spirochete which causes the infection but also because of its vertical transmission rate and the potential severe adverse complications/morbidity that can result from its transmission to the fetus. Although the incidence of maternal syphilis and its fetal sequalae in low-income countries has been considerable for several years, the disease has been almost non-existent in high income countries with wide antenatal screening coverage and effective treatment programmes for Syphilis. The recent alarming increase in the incidence of maternal syphilis in high income countries has spawned a renewed public health interest in the infection, with several countries updating and strengthening public health guidance in an attempt to stem this dramatic trend. This is a short clinical update for the practising obstetrician on how to manage the antenatal patient with a positive syphilis screening test.
基金the funding support from the National Natural Science Foundation of China(Grant No.51709290)the Key Scientific Research Project of colleges and universities in Henan Province-Special Project of Basic Research(Grant No.20zx009)the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.22A580008).
文摘The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS.