期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
MAXIMAL FUNCTION CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH BOTH NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING GAUSSIAN ESTIMATES AND BALL QUASI-BANACH FUNCTION SPACES
1
作者 林孝盛 杨大春 +1 位作者 杨四辈 袁文 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期484-514,共31页
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som... Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new. 展开更多
关键词 hardy space ball quasi-Banach function space Gaussian upper bound estimate non-negative self-adjoint operator maximal function
下载PDF
改进型Hardy-Sobolev不等式最好常数的一个上界
2
作者 贾高 《应用数学》 CSCD 北大核心 2006年第3期637-641,共5页
在本文,我们对改进型Hardy-Sobolev不等式的最好常数进行研究,得到该常数的一个上界.
关键词 SOBOLEV空间 hardy—Sobolev不等式 最好常数 上界
下载PDF
上半平面的Bloch空间和增长型空间上的复合算子的谱
3
作者 姬小斌 于涛 《浙江师范大学学报(自然科学版)》 CAS 2011年第2期132-134,共3页
研究了上半平面Bloch空间和上半平面增长型空间上的复合算子,证明了一类Bloch空间上复合算子的谱是闭单位圆盘,并刻画了一类增长型空间上复合算子的谱.
关键词 复合算子 上半平面hardy空间 上半平面增长型空间 上半平面Bloch空间
下载PDF
Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces 被引量:26
4
作者 LIN HaiBo YANG DaChun 《Science China Mathematics》 SCIE 2014年第1期123-144,共22页
Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiew... Let(X,d,μ)be a metric measure space satisfying the upper doubling condition and the geometrically doubling condition in the sense of Hyto¨nen.We prove that the L p(μ)-boundedness with p∈(1,∞)of the Marcinkiewicz integral is equivalent to either of its boundedness from L1(μ)into L1,∞(μ)or from the atomic Hardy space H1(μ)into L1(μ).Moreover,we show that,if the Marcinkiewicz integral is bounded from H1(μ)into L1(μ),then it is also bounded from L∞(μ)into the space RBLO(μ)(the regularized BLO),which is a proper subset of RBMO(μ)(the regularized BMO)and,conversely,if the Marcinkiewicz integral is bounded from L∞b(μ)(the set of all L∞(μ)functions with bounded support)into the space RBMO(μ),then it is also bounded from the finite atomic Hardy space H1,∞fin(μ)into L1(μ).These results essentially improve the known results even for non-doubling measures. 展开更多
关键词 upper doubling geometrically doubling Marcinkiewicz integral atomic hardy space RBMO(μ)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部