In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted wea...In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space WH;(R;) to the weighted weak Lebesgue space WL;(R;) for ω∈A;(R;).展开更多
In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singu...In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11501233)China Postdoctoral Science Foundation(No.2015M572327)+2 种基金Humanities and Social Sciences Program of the Ministry of Education(No.15YJC630053)Natural Science Foundation of Anhui Province(No.1408085MA08 and No.1508085SMA204)Natural Science Foundation of the Education Department of Anhui Province(No.KJ2015A335 and No.KJ2015A270)
文摘In this paper, by using the atomic decomposition of the weighted weak Hardy space WH;(R;), the authors discuss a class of multilinear oscillatory singular integrals and obtain their boundedness from the weighted weak Hardy space WH;(R;) to the weighted weak Lebesgue space WL;(R;) for ω∈A;(R;).
文摘In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.