This paper examines the harmonic oscillations in a grid-connected PV generation farm(PVGF)caused by the parallel connection of an increased number of PV generation units(PVGUs).An equivalent model of the grid-connecte...This paper examines the harmonic oscillations in a grid-connected PV generation farm(PVGF)caused by the parallel connection of an increased number of PV generation units(PVGUs).An equivalent model of the grid-connected PVGF is derived,which clearly explains why there are internal and external oscillation modes in the grid-connected PVGF.An indicator of impedance multiplication(IIM)is proposed to quantitatively estimate the impact of the increased number of PVGUs in parallel connection.The analysis in this paper reveals the mechanism about why the damping of external oscillation modes may decrease when more PVGUs are in parallel connection under the condition that the IIM is positive.An example grid-connected PVGF is presented in this paper to demonstrate and evaluate the derived analysis and conclusions.A method for designing the damping controllers to ensure a negative IIM is proposed.With the damping controllers being installed,the risk of growing harmonic oscillations caused by the increased number of the PVGUs in parallel connection can be effectively eliminated.展开更多
In the classical formulation, the problem of thermal explosion in a finite volume of the reacting material in the presence of harmonic oscillations of the ambient temperature has been solved. It is shown that in the o...In the classical formulation, the problem of thermal explosion in a finite volume of the reacting material in the presence of harmonic oscillations of the ambient temperature has been solved. It is shown that in the oscillation periods, commensurate with the adiabatic induction period of thermal explosion, implement a kind of resonance which corresponding with average ambient temperature. At both high and very low frequencies oscillations at ambient temperature, their influence on the critical condition and on the induction period of thermal explosion is negligible. However, at low-frequencies influence of ambient temperature oscillations, even a relatively low amplitude, on critical condition and especially on induction period of thermal explosion, can be very strong.展开更多
Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The non...Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.展开更多
Exact solutions of the eigenvalue problem of two coupled harmonic oscillators related to the Sp(4, R) Lie algebra are derived by using an algebraic method. It is found that the energy spectrum of the system is determi...Exact solutions of the eigenvalue problem of two coupled harmonic oscillators related to the Sp(4, R) Lie algebra are derived by using an algebraic method. It is found that the energy spectrum of the system is determined by one-boson excitation energies built on a vector coherent state of Sp(4, R) U(2).展开更多
In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for s...In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.展开更多
First, a Lagrangian is presented and authenticated for a Relativistic Harmonic Oscillator in 1 + 1 dimensions. It yields a two-component set of equations of motion. The time-component is the missing piece in all previ...First, a Lagrangian is presented and authenticated for a Relativistic Harmonic Oscillator in 1 + 1 dimensions. It yields a two-component set of equations of motion. The time-component is the missing piece in all previous discussions of this system! The second result is that this Oscillator Langrangian generalizes to Langrangians for a class of particles in 1 + 1 dimensions subject to an arbitrary potential <em>V</em> which is space dependent only.展开更多
The stochastic resonance phenomenon in a harmonic oscillator with fluctuating intrinsic frequency by asymmetric dichotomous noise is investigated in this paper. By using the random average method and Shapiro- Loginov ...The stochastic resonance phenomenon in a harmonic oscillator with fluctuating intrinsic frequency by asymmetric dichotomous noise is investigated in this paper. By using the random average method and Shapiro- Loginov formula, the exact solution of the average output amplitude gain (OAG) is obtained. Numerical results show that OAG depends non-monotonically on the noise characteristics: intensity, correlation time and asymmetry. The maximum OAG can be achieved by tuning the noise asymmetry and or the noise correlation time.展开更多
The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space p...The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space path integral method. The probability amplitudes for a dissipative harmonic oscillator in the time varying electric field are obtained.展开更多
The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated,including stability, synchronization, and stochastic resonance(SR). First, the synchronization condi...The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated,including stability, synchronization, and stochastic resonance(SR). First, the synchronization condition of the system is obtained. When this condition is satisfied, the mean-field behavior is consistent with any single particle behavior in the system. On this basis, the stability condition and the exact steady-state solution of the system are derived. Comparative analysis shows that, the stability condition is stronger than the synchronization condition, that is to say, when the stability condition is satisfied, the system is both synchronous and stable. Simulation analysis indicates that increasing the coupling strength will reduce the synchronization time. In weak coupling region, there is an optimal coupling strength that maximizes the output amplitude gain(OAG), thus the coupling-induced SR behavior occurs. In strong coupling region, the two particles are bounded as a whole, so that the coupling effect gradually disappears.展开更多
We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low...We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.展开更多
The propagator for a time-dependent damped harmonic oscillator with a force quadratic in velocity is obtained by making a specific coordinate transformation and by using the method of time-dependent invariant.
For investigating dynamic evolution of a mass-varying harmonic oscillator we constitute a ket-bra integrationoperator in coherent state representation and then perform this integral by virtue of the technique of integ...For investigating dynamic evolution of a mass-varying harmonic oscillator we constitute a ket-bra integrationoperator in coherent state representation and then perform this integral by virtue of the technique of integration withinan ordered product of operators.The normally ordered time evolution operator is thus obtained.We then derive theWigner function of u(t)|n>,where |n> is a Fock state,which exhibits a generalized squeezing,the squeezing effect isrelated to the varying mass with time.展开更多
We construct a general form of propagator in arbitrary dimensions and give an exact wavefunction of a time- dependent forced harmonic oscillator in D(D ≥ 1) dimensions. The coherent states, defined as the eigenstat...We construct a general form of propagator in arbitrary dimensions and give an exact wavefunction of a time- dependent forced harmonic oscillator in D(D ≥ 1) dimensions. The coherent states, defined as the eigenstates of annihilation operator, of the D-dimensional harmonic oscillator are derived. These coherent states correspond to the minimum uncertainty states and the relation between them is investigated.展开更多
For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld inva...For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.展开更多
In cylindrical coordinate, exact wave functions of the two-dimensional time-dependent harmonic oscillator in a time-dependent magnetic field are derived by using the trial function method. Meanwhile, the exact classic...In cylindrical coordinate, exact wave functions of the two-dimensional time-dependent harmonic oscillator in a time-dependent magnetic field are derived by using the trial function method. Meanwhile, the exact classical solution as well as the classicalphase is obtained too. Through the Heisenberg correspondence principle, the quantum solution and the classical solution are connected together.展开更多
By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schrodinger equation describing a...By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schrodinger equation describing a quantum one-dimensional harmonic oscillator of time-dependent frequency confined in an infinite square well with the two walls moving along some parametric trajectories. Based upon the orthonormal basis of quasi-stationary wave functions, the exact propagator of the system has also been analytically derived. Special eases like (i) a confined free particle, (ii) a confined time-independent harmonic oscillator, and (iii) an aging oscillator are examined, and the corresponding time- dependent wave functions are explicitly determined. Besides, the approach has been extended to solve the case of a confined generalized time-dependent harmonic oscillator for some parametric moving boundaries as well.展开更多
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue a...We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.展开更多
Photodetachment of negative ions has attracted immense interest owing to its fundamental nature and practical implications with regard to technology. In this study, we explore the quantum dynamics of the photodetachme...Photodetachment of negative ions has attracted immense interest owing to its fundamental nature and practical implications with regard to technology. In this study, we explore the quantum dynamics of the photodetachment cross section of negative ion of hydrogen H-in the perturbed one dimensional linear harmonic potential via static electric field. To this end,the quantum formula for total photodetachment cross section of the H-ion is derived by calculating the dipole matrix element in spherical coordinates. In order to obtain the detached electron wave function, we have solved the time-independent Schr¨odinger wave equation for the perturbed Hamiltonian of the harmonic oscillator in momentum representation. To acquire the corresponding normalized final state detached electron wave function in momentum space, we have employed an approach analogous to the WKB(Wenzel–Kramers–Brillouin) approximation. The resulting analytical formula of total photodetachment cross section depicts interesting oscillator structure that varies considerably with incident-photon energy,oscillator potential frequency, and electric field strength as elucidated by the numerical results. The current problem having close analogy with the Stark effect in charged harmonic oscillator may have potential implications in atomic and molecular physics and quantum optics.展开更多
The imaginary time path integral formalism offers a powerful numerical tool for simulating thermodynamic properties of realistic systems.We show that,when second-order and fourth-order decompositions are employed,they...The imaginary time path integral formalism offers a powerful numerical tool for simulating thermodynamic properties of realistic systems.We show that,when second-order and fourth-order decompositions are employed,they share a remarkable unified analytic form for the partition function of the harmonic oscillator.We are then able to obtain the expression of the thermodynamic property and the leading error terms as well.In order to obtain reasonably optimal values of the free parameters in the generalized symmetric fourth-order decomposition scheme,we eliminate the leading error terms to achieve the accuracy of desired order for the thermodynamic property of the harmonic system.Such a strategy leads to an efficient fourth-order decomposition that produces thirdorder accurate thermodynamic properties for general systems.展开更多
In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of ...In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).展开更多
基金supported by the Special Key Project of Science and Technology of Gansu Province entitled key technology and demonstrating applications of market driven consumption and dispatching control of new energy electricity generation based on concentrating solar,photovoltaic and wind power(19ZD2GA003).
文摘This paper examines the harmonic oscillations in a grid-connected PV generation farm(PVGF)caused by the parallel connection of an increased number of PV generation units(PVGUs).An equivalent model of the grid-connected PVGF is derived,which clearly explains why there are internal and external oscillation modes in the grid-connected PVGF.An indicator of impedance multiplication(IIM)is proposed to quantitatively estimate the impact of the increased number of PVGUs in parallel connection.The analysis in this paper reveals the mechanism about why the damping of external oscillation modes may decrease when more PVGUs are in parallel connection under the condition that the IIM is positive.An example grid-connected PVGF is presented in this paper to demonstrate and evaluate the derived analysis and conclusions.A method for designing the damping controllers to ensure a negative IIM is proposed.With the damping controllers being installed,the risk of growing harmonic oscillations caused by the increased number of the PVGUs in parallel connection can be effectively eliminated.
文摘In the classical formulation, the problem of thermal explosion in a finite volume of the reacting material in the presence of harmonic oscillations of the ambient temperature has been solved. It is shown that in the oscillation periods, commensurate with the adiabatic induction period of thermal explosion, implement a kind of resonance which corresponding with average ambient temperature. At both high and very low frequencies oscillations at ambient temperature, their influence on the critical condition and on the induction period of thermal explosion is negligible. However, at low-frequencies influence of ambient temperature oscillations, even a relatively low amplitude, on critical condition and especially on induction period of thermal explosion, can be very strong.
基金supported by the National Natural Science Foundation of China (Grants 11402151 and 11572182)
文摘Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass,a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra,and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed.The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.
基金Key Track Follow-Up Service Foundation of the State Education Commission of China,Science Foundation of the Liaoning Education Commission of China
文摘Exact solutions of the eigenvalue problem of two coupled harmonic oscillators related to the Sp(4, R) Lie algebra are derived by using an algebraic method. It is found that the energy spectrum of the system is determined by one-boson excitation energies built on a vector coherent state of Sp(4, R) U(2).
基金partially supported by the National Science Foundation of China(11272791,61364003,and 61203006)the Innovation Program of Shanghai Municipal Education Commission(10ZZ61 and 14ZZ151)the Science and Technology Foundation of Guizhou Province(20122316)
文摘In this letter, a distributed protocol for sampled-data synchronization of coupled harmonic oscillators with controller failure and communication delays is proposed, and a brief procedure of convergence analysis for such algorithm over undirected connected graphs is provided. Furthermore, a simple yet generic criterion is also presented to guarantee synchronized oscillatory motions in coupled harmonic oscillators. Subsequently, the simulation results are worked out to demonstrate the efficiency and feasibility of the theoretical results.
文摘First, a Lagrangian is presented and authenticated for a Relativistic Harmonic Oscillator in 1 + 1 dimensions. It yields a two-component set of equations of motion. The time-component is the missing piece in all previous discussions of this system! The second result is that this Oscillator Langrangian generalizes to Langrangians for a class of particles in 1 + 1 dimensions subject to an arbitrary potential <em>V</em> which is space dependent only.
文摘The stochastic resonance phenomenon in a harmonic oscillator with fluctuating intrinsic frequency by asymmetric dichotomous noise is investigated in this paper. By using the random average method and Shapiro- Loginov formula, the exact solution of the average output amplitude gain (OAG) is obtained. Numerical results show that OAG depends non-monotonically on the noise characteristics: intensity, correlation time and asymmetry. The maximum OAG can be achieved by tuning the noise asymmetry and or the noise correlation time.
文摘The invariant, propagator, and wavefunction for a variable frequency harmonic oscillator in an electromagnetic field are obtained by making a specific coordinate transformation and by using the method of phase space path integral method. The probability amplitudes for a dissipative harmonic oscillator in the time varying electric field are obtained.
基金supported by the National Natural Science Foundation of China for the Youth (Grant Nos. 11501385 and 11801385)。
文摘The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated,including stability, synchronization, and stochastic resonance(SR). First, the synchronization condition of the system is obtained. When this condition is satisfied, the mean-field behavior is consistent with any single particle behavior in the system. On this basis, the stability condition and the exact steady-state solution of the system are derived. Comparative analysis shows that, the stability condition is stronger than the synchronization condition, that is to say, when the stability condition is satisfied, the system is both synchronous and stable. Simulation analysis indicates that increasing the coupling strength will reduce the synchronization time. In weak coupling region, there is an optimal coupling strength that maximizes the output amplitude gain(OAG), thus the coupling-induced SR behavior occurs. In strong coupling region, the two particles are bounded as a whole, so that the coupling effect gradually disappears.
文摘We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as T^-4 arid T^-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.
文摘The propagator for a time-dependent damped harmonic oscillator with a force quadratic in velocity is obtained by making a specific coordinate transformation and by using the method of time-dependent invariant.
基金Supported by National Natural Science Foundation of China under Grant No.10874174
文摘For investigating dynamic evolution of a mass-varying harmonic oscillator we constitute a ket-bra integrationoperator in coherent state representation and then perform this integral by virtue of the technique of integration withinan ordered product of operators.The normally ordered time evolution operator is thus obtained.We then derive theWigner function of u(t)|n>,where |n> is a Fock state,which exhibits a generalized squeezing,the squeezing effect isrelated to the varying mass with time.
基金Project supported by the National Natural Science Foundation of China (Grant No 60261004) and Yunnan Province Science Foundation (Grant No 2002E0008M).
文摘We construct a general form of propagator in arbitrary dimensions and give an exact wavefunction of a time- dependent forced harmonic oscillator in D(D ≥ 1) dimensions. The coherent states, defined as the eigenstates of annihilation operator, of the D-dimensional harmonic oscillator are derived. These coherent states correspond to the minimum uncertainty states and the relation between them is investigated.
文摘For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.
文摘In cylindrical coordinate, exact wave functions of the two-dimensional time-dependent harmonic oscillator in a time-dependent magnetic field are derived by using the trial function method. Meanwhile, the exact classical solution as well as the classicalphase is obtained too. Through the Heisenberg correspondence principle, the quantum solution and the classical solution are connected together.
文摘By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schrodinger equation describing a quantum one-dimensional harmonic oscillator of time-dependent frequency confined in an infinite square well with the two walls moving along some parametric trajectories. Based upon the orthonormal basis of quasi-stationary wave functions, the exact propagator of the system has also been analytically derived. Special eases like (i) a confined free particle, (ii) a confined time-independent harmonic oscillator, and (iii) an aging oscillator are examined, and the corresponding time- dependent wave functions are explicitly determined. Besides, the approach has been extended to solve the case of a confined generalized time-dependent harmonic oscillator for some parametric moving boundaries as well.
基金supported by the National Natural Science Foundation of China under Grant Nos.10125521 and 60371013the 973 National Basic Pesearch and Development Program of China under Contract No.G2000077400
文摘We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.
文摘Photodetachment of negative ions has attracted immense interest owing to its fundamental nature and practical implications with regard to technology. In this study, we explore the quantum dynamics of the photodetachment cross section of negative ion of hydrogen H-in the perturbed one dimensional linear harmonic potential via static electric field. To this end,the quantum formula for total photodetachment cross section of the H-ion is derived by calculating the dipole matrix element in spherical coordinates. In order to obtain the detached electron wave function, we have solved the time-independent Schr¨odinger wave equation for the perturbed Hamiltonian of the harmonic oscillator in momentum representation. To acquire the corresponding normalized final state detached electron wave function in momentum space, we have employed an approach analogous to the WKB(Wenzel–Kramers–Brillouin) approximation. The resulting analytical formula of total photodetachment cross section depicts interesting oscillator structure that varies considerably with incident-photon energy,oscillator potential frequency, and electric field strength as elucidated by the numerical results. The current problem having close analogy with the Stark effect in charged harmonic oscillator may have potential implications in atomic and molecular physics and quantum optics.
基金supported by the National Natural Science Foundation of China(No.21961142017,No.22073009 and No.21421003)the Ministry of Science and Technology of China(No.2017YFA0204901)。
文摘The imaginary time path integral formalism offers a powerful numerical tool for simulating thermodynamic properties of realistic systems.We show that,when second-order and fourth-order decompositions are employed,they share a remarkable unified analytic form for the partition function of the harmonic oscillator.We are then able to obtain the expression of the thermodynamic property and the leading error terms as well.In order to obtain reasonably optimal values of the free parameters in the generalized symmetric fourth-order decomposition scheme,we eliminate the leading error terms to achieve the accuracy of desired order for the thermodynamic property of the harmonic system.Such a strategy leads to an efficient fourth-order decomposition that produces thirdorder accurate thermodynamic properties for general systems.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574060)the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Shandong Provincal Higher Educational Science and Technology Program of China (Grant Nos. J09LA07 and J10LA15)
文摘In this paper we find that a set of energy eigenstates of a two-dimensional anisotropic harmonic potential in a uniform magnetic field is classified as the atomic coherent states |τ) in terms of the spin values of j in the Schwinger bosonic realization. The correctness of the above conclusions can be verified by virtue of the entangled state 〈η| representation of the state |τ).