We theoretically investigate the high-order harmonic generation of the one-dimensional hydrogen molecular ion at fixed intermediate internuclear distance, driven by a multicycle laser field. Our results show that the ...We theoretically investigate the high-order harmonic generation of the one-dimensional hydrogen molecular ion at fixed intermediate internuclear distance, driven by a multicycle laser field. Our results show that the initial electronic state of the hydrogen molecular ion affects the modulation of the high-order harmonic spectrum, especially the positions of the minima. Based on the two-state model, the underlying physical mechanism of the minimum is analyzed and discussed. Further analysis shows that the different positions of the minima in the different initial electronic states can be understood via the different interferences of the two phase-adiabatic states at the ionization times.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
Perceiving harmonic information (especially weak harmonic information) in time series has important scientific and engineering significance. Fourier spectrum and time-frequency spectrum are commonly used tools for per...Perceiving harmonic information (especially weak harmonic information) in time series has important scientific and engineering significance. Fourier spectrum and time-frequency spectrum are commonly used tools for perceiving harmonic information, but they are often ineffective in perceiving weak harmonic signals because they are based on energy or amplitude analysis. Based on the theory of Normal time-frequency transform (NTFT) and complex correlation coefficient, a new type of spectrum, the Harmonicity Spectrum (HS), is developed to perceive harmonic information in time series. HS is based on the degree of signal harmony rather than energy or amplitude analysis, and can therefore perceive very weak harmonic information in signals sensitively. Simulation examples show that HS can detect harmonic information that cannot be detected by Fourier spectrum or time-frequency spectrum. Acoustic data analysis shows that HS has better resolution than traditional LOFAR spectrum.展开更多
We demonstrate the suppression of soft X-ray high harmonics generated by two-color laser pulses interacting with Ne gas in a gas cell. We show that harmonic suppression can occur at the proper combination of the propa...We demonstrate the suppression of soft X-ray high harmonics generated by two-color laser pulses interacting with Ne gas in a gas cell. We show that harmonic suppression can occur at the proper combination of the propagation distance and gas pressure. The physical mechanism behind is the phase mismatch between "short"-trajectory harmonics generated at the early and later times through the interplay of geo- metric phase, dispersion, and plasma effects. In addition, we demonstrate that the position and depth of harmonic suppression can be tuned by increasing the gas pressure. Furthermore, the suppression can be extended to other laser focusing configurations by properly scaling macroscopic parameters. Our investigation reveals a simple controlling soft X-ray Laser Press and novel experimental scheme purely relying on the phase mismatch for selectively tabletop light sources without adopting the filters for applications.展开更多
We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with p...We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.展开更多
With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireles...With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireless networks,this article aims to unify the existing infrared,visible light,and ultraviolet subbands while also exploring the potential of the Petahertz(PHz)band to support extremely bandwidth-thirsfy telepresence style applications.Our focus is on the emerging Petahertz Communication(PetaCom)framework,scenario-dependent propagation channels,modulation schemes,system performance,multiple access techniques,and networking.We conclude with a range of PetaCom challenges and open research issues.展开更多
In this paper,we show that the spectrum of Toeplitz operators on the Bergman space with harmonic symbols of affine functions of z and equals the image of closed unit disk under the symbol.Surprisingly this does not h...In this paper,we show that the spectrum of Toeplitz operators on the Bergman space with harmonic symbols of affine functions of z and equals the image of closed unit disk under the symbol.Surprisingly this does not hold for Toeplitz operators with harmonic symbols of quadratic functions of z and .展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11404204)the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province,China
文摘We theoretically investigate the high-order harmonic generation of the one-dimensional hydrogen molecular ion at fixed intermediate internuclear distance, driven by a multicycle laser field. Our results show that the initial electronic state of the hydrogen molecular ion affects the modulation of the high-order harmonic spectrum, especially the positions of the minima. Based on the two-state model, the underlying physical mechanism of the minimum is analyzed and discussed. Further analysis shows that the different positions of the minima in the different initial electronic states can be understood via the different interferences of the two phase-adiabatic states at the ionization times.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.
文摘Perceiving harmonic information (especially weak harmonic information) in time series has important scientific and engineering significance. Fourier spectrum and time-frequency spectrum are commonly used tools for perceiving harmonic information, but they are often ineffective in perceiving weak harmonic signals because they are based on energy or amplitude analysis. Based on the theory of Normal time-frequency transform (NTFT) and complex correlation coefficient, a new type of spectrum, the Harmonicity Spectrum (HS), is developed to perceive harmonic information in time series. HS is based on the degree of signal harmony rather than energy or amplitude analysis, and can therefore perceive very weak harmonic information in signals sensitively. Simulation examples show that HS can detect harmonic information that cannot be detected by Fourier spectrum or time-frequency spectrum. Acoustic data analysis shows that HS has better resolution than traditional LOFAR spectrum.
基金Fundamental Research Funds for the Central Universities of China(30916011207)National Natural Science Foundation of China(NSFC)(11774175)+1 种基金U.S. Department of Energy(DOE)(DE-FG02-86ER13491)Air Force Office of Scientific Research(AFOSR)(FA9550-14-1-0255)
文摘We demonstrate the suppression of soft X-ray high harmonics generated by two-color laser pulses interacting with Ne gas in a gas cell. We show that harmonic suppression can occur at the proper combination of the propagation distance and gas pressure. The physical mechanism behind is the phase mismatch between "short"-trajectory harmonics generated at the early and later times through the interplay of geo- metric phase, dispersion, and plasma effects. In addition, we demonstrate that the position and depth of harmonic suppression can be tuned by increasing the gas pressure. Furthermore, the suppression can be extended to other laser focusing configurations by properly scaling macroscopic parameters. Our investigation reveals a simple controlling soft X-ray Laser Press and novel experimental scheme purely relying on the phase mismatch for selectively tabletop light sources without adopting the filters for applications.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0303600)the National Natural Science Foundation of China(Grant Nos.11974253 and 11774248)。
文摘We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.
基金supported by the Key Program of the National Natural Science Foundation of China(No.61631018),Key Research Program of Frontier Sciences of CAS(No.QYZDY-SSW-JSC003)Strategic Priority Research Program of CAS(No.XDA22000000).L.Hanzo would like to acknowledge the financial support of the Engineering and Physical Sciences Research Council projects EP/P034284/1 and EP/P003990/1(COALESCE)as well as of the European Research Council’s Advanced Fellow Grant QuantCom(Grant No.789028).
文摘With the rapid deployment of Next-Generation Networks(NGN),the research community has initiated discussions on an entirely new suite of optical enabling techniques.To pave the way for the development of future wireless networks,this article aims to unify the existing infrared,visible light,and ultraviolet subbands while also exploring the potential of the Petahertz(PHz)band to support extremely bandwidth-thirsfy telepresence style applications.Our focus is on the emerging Petahertz Communication(PetaCom)framework,scenario-dependent propagation channels,modulation schemes,system performance,multiple access techniques,and networking.We conclude with a range of PetaCom challenges and open research issues.
基金supported by National Natural Science Foundation of China(Grant No.11271387)Chongqing Natural Sience Foundation(Grant No.2013jjB 0050)Simons Foundation(Grant No.196300)
文摘In this paper,we show that the spectrum of Toeplitz operators on the Bergman space with harmonic symbols of affine functions of z and equals the image of closed unit disk under the symbol.Surprisingly this does not hold for Toeplitz operators with harmonic symbols of quadratic functions of z and .