In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature...In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.展开更多
The harmonic wavelet transform(HWT) and its fast realization based on fast Fourier transform(FFT) are introduced. Its ability to maintain the same amplitude-frequency feature is revealed. A new method to construct...The harmonic wavelet transform(HWT) and its fast realization based on fast Fourier transform(FFT) are introduced. Its ability to maintain the same amplitude-frequency feature is revealed. A new method to construct the time-frequency(TF) spectrum of HWT is proposed, which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal. A new way to calculate the HWT coefficients is proposed. By zero padding the data taken out, the non-decimated coefficients of HWT are obtained. Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band. By taking the cross section of the new TF spectrum, the demodulation for the component at a certain frequency band can be realized. A comparison with the Hilbert demodulation combined with band-pass filtering is done, which indicates for multi-components, the method proposed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting. In the end, it is applied to bearing and gearbox fault diagnosis, and the results reflect that it can effectively extract the fault features in the signal.展开更多
Harmonic wavelets not only possess the traditional advantages of a wavelet function,they also have other merits such as clear expressions,more flexible time-frequency divisions,a simple transformation algorithm,a fine...Harmonic wavelets not only possess the traditional advantages of a wavelet function,they also have other merits such as clear expressions,more flexible time-frequency divisions,a simple transformation algorithm,a finer box-like frequency spectrum and others.Given the frequency distribution characteristics of the nondestructive testing signals from a rockbolt support system and based on the discrete harmonic wavelet transformation theory,we have effectively abstracted signals from frequency ranges concerned by removing useless high and low frequency signals from the testing signals of the rockbolt support system and obtained filtered signals with a reconstruction algorithm of harmonic wavelets.Finally,we applied the harmonic wavelet transformation in filtering analog signals and measured response signals of rockbolts.The results indicate that harmonic wavelets also have excellent filtering characteristics.展开更多
It is a fact that acoustic emission(AE) signals contain potentially valuable information for tool wear and breakage monitoring and detection.However,AE stress waves produced in the cutting zone are distorted by the tr...It is a fact that acoustic emission(AE) signals contain potentially valuable information for tool wear and breakage monitoring and detection.However,AE stress waves produced in the cutting zone are distorted by the transmission path and the measurement systems,it is difficult to obtain a reliable result by these raw AE data.It is generally known that the process of tool wear belongs to detect weak singularity signals in strong noise.The objective of this paper is to combine Newland Harmonic wavelet and Richman-Moorman(2000) sample entropy for detecting weak singularity signals embedded in strong signals.First,the raw AE signal is decomposed by harmonic wavelet and transformed into the three-dimensional time-frequency mesh map of the harmonic wavelet,at the same time,the contours of the mesh map with log space is induced.Second,the profile map of the three-dimensional time-frequency mesh map is offered,which corresponds to decomposed level on harmonic wavelets.Final,by computing sample entropy in each level,the weak singularity signal can be easily extracted from strong noise.Machining test was carried out on HL-32 NC turning center.This lathe does not have a tailstock.Tungsten carbide finishing tool was used to turn free machining mild steel.The work material was chosen for ease of machining,allowing for generation of surfaces of varying quality without the use of cutting fluids.In turning experiments,the feasibility for tool condition monitoring is demonstrated by 27 kinds of cutting conditions with the sharp tool and the worn tool,54 group data are sampled by AE.The sample entropy of each level of wavelet decomposed for each one of 54 AE datum is computed,wear tool and shaper tool can be distinguished obviously by the sample entropy value at the 12th level,this is a criterion.The proposed research provides a new theoretical basis and a new engineering application on the tool condition monitoring.展开更多
As the core part of reciprocating compressor,piston rod is easy to cause a serious accident when abrasion and breakage fault occur to it. Therefore,it is very important to monitor its running state. At present,a small...As the core part of reciprocating compressor,piston rod is easy to cause a serious accident when abrasion and breakage fault occur to it. Therefore,it is very important to monitor its running state. At present,a small number of reciprocating compressors have been installed on-line monitoring and diagnosis system,most of which can only monitor a single vertical subsidence of piston rod and it can't fully represent the running state of piston rod. Therefore,a method of monitoring the vertical and horizontal displacement of piston rod axis orbit is simultaneously used. In view of the characteristics that the piston rod axis orbit is disordered and difficult to extract features,purification of the axis orbit is carried out based on harmonic wavelet and then features are extracted such as vibration energy,natural frequency and the axis orbit envelope area. After that,a nonlinear local tangent space manifold learning algorithm is used to reduce the dimension of the features and obtain sensitive features. By analyzing the practical cases,the effectiveness of the method for fault monitoring and diagnosis of reciprocating compressor piston rod assembly has been verified. Finally,as BP neural network has the characteristics of solving complex nonlinear problems,the validity of the fault diagnosis method of reciprocating compressor piston rod based on harmonic wavelet and manifold learning is proved by actual case data analysis based on BP neural network.展开更多
The thesis introduces various characteristic wavelet bases used in non-stationary machinery equipment diagnosis, then discusses genetic wavelets and harmonic wavelets and their practical application respectively in fa...The thesis introduces various characteristic wavelet bases used in non-stationary machinery equipment diagnosis, then discusses genetic wavelets and harmonic wavelets and their practical application respectively in fault diagnosis of an internal combustion engine and in orbits extracting (analysis) of rotating machinery.展开更多
The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andf...The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.展开更多
Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is a...Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.展开更多
基金The Natural Science Foundation of Heilongjiang Province ( No. F201018)the National Natural Science Foundation of China( No. 60901042)
文摘In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.
基金supported by National Natural Science Foundation of China (Grant No. 50575233)National Hi-tech Research and Development Program of China (Grant No. 2008AA042408)
文摘The harmonic wavelet transform(HWT) and its fast realization based on fast Fourier transform(FFT) are introduced. Its ability to maintain the same amplitude-frequency feature is revealed. A new method to construct the time-frequency(TF) spectrum of HWT is proposed, which makes the HWT TF spectrum able to correctly reflect the time-frequency-amplitude distribution of the signal. A new way to calculate the HWT coefficients is proposed. By zero padding the data taken out, the non-decimated coefficients of HWT are obtained. Theoretical analysis shows that the modulus of the coefficients obtained by the new calculation way and living at a certain scale are the envelope of the component in the corresponding frequency band. By taking the cross section of the new TF spectrum, the demodulation for the component at a certain frequency band can be realized. A comparison with the Hilbert demodulation combined with band-pass filtering is done, which indicates for multi-components, the method proposed here is more suitable since it realizes ideal band-pass filtering and avoids pass band selecting. In the end, it is applied to bearing and gearbox fault diagnosis, and the results reflect that it can effectively extract the fault features in the signal.
基金Financial support for this work provided by the National Basic Research Program of China (No.2007CB209400)the 111 Project of China (No.B07028)+2 种基金the Key Program of National Natural Science Foundation of China(No.50834004)the National Natural Science Foundation of China (No.50874104)the Natural Science Foundation of Jiangsu Province(No.BK2006040)
文摘Harmonic wavelets not only possess the traditional advantages of a wavelet function,they also have other merits such as clear expressions,more flexible time-frequency divisions,a simple transformation algorithm,a finer box-like frequency spectrum and others.Given the frequency distribution characteristics of the nondestructive testing signals from a rockbolt support system and based on the discrete harmonic wavelet transformation theory,we have effectively abstracted signals from frequency ranges concerned by removing useless high and low frequency signals from the testing signals of the rockbolt support system and obtained filtered signals with a reconstruction algorithm of harmonic wavelets.Finally,we applied the harmonic wavelet transformation in filtering analog signals and measured response signals of rockbolts.The results indicate that harmonic wavelets also have excellent filtering characteristics.
基金supported by Shanghai Municipal Natural Science Foundation of China (Grant No. 50975169/E050603)
文摘It is a fact that acoustic emission(AE) signals contain potentially valuable information for tool wear and breakage monitoring and detection.However,AE stress waves produced in the cutting zone are distorted by the transmission path and the measurement systems,it is difficult to obtain a reliable result by these raw AE data.It is generally known that the process of tool wear belongs to detect weak singularity signals in strong noise.The objective of this paper is to combine Newland Harmonic wavelet and Richman-Moorman(2000) sample entropy for detecting weak singularity signals embedded in strong signals.First,the raw AE signal is decomposed by harmonic wavelet and transformed into the three-dimensional time-frequency mesh map of the harmonic wavelet,at the same time,the contours of the mesh map with log space is induced.Second,the profile map of the three-dimensional time-frequency mesh map is offered,which corresponds to decomposed level on harmonic wavelets.Final,by computing sample entropy in each level,the weak singularity signal can be easily extracted from strong noise.Machining test was carried out on HL-32 NC turning center.This lathe does not have a tailstock.Tungsten carbide finishing tool was used to turn free machining mild steel.The work material was chosen for ease of machining,allowing for generation of surfaces of varying quality without the use of cutting fluids.In turning experiments,the feasibility for tool condition monitoring is demonstrated by 27 kinds of cutting conditions with the sharp tool and the worn tool,54 group data are sampled by AE.The sample entropy of each level of wavelet decomposed for each one of 54 AE datum is computed,wear tool and shaper tool can be distinguished obviously by the sample entropy value at the 12th level,this is a criterion.The proposed research provides a new theoretical basis and a new engineering application on the tool condition monitoring.
基金Supported by the National Basic Research Program of China(863Program)(No.2014AA041806)the National Key Research and Development Plan(No.2016YFF0203305)
文摘As the core part of reciprocating compressor,piston rod is easy to cause a serious accident when abrasion and breakage fault occur to it. Therefore,it is very important to monitor its running state. At present,a small number of reciprocating compressors have been installed on-line monitoring and diagnosis system,most of which can only monitor a single vertical subsidence of piston rod and it can't fully represent the running state of piston rod. Therefore,a method of monitoring the vertical and horizontal displacement of piston rod axis orbit is simultaneously used. In view of the characteristics that the piston rod axis orbit is disordered and difficult to extract features,purification of the axis orbit is carried out based on harmonic wavelet and then features are extracted such as vibration energy,natural frequency and the axis orbit envelope area. After that,a nonlinear local tangent space manifold learning algorithm is used to reduce the dimension of the features and obtain sensitive features. By analyzing the practical cases,the effectiveness of the method for fault monitoring and diagnosis of reciprocating compressor piston rod assembly has been verified. Finally,as BP neural network has the characteristics of solving complex nonlinear problems,the validity of the fault diagnosis method of reciprocating compressor piston rod based on harmonic wavelet and manifold learning is proved by actual case data analysis based on BP neural network.
基金National Natural Science Foundation of China !59775023 Natural Science Research Foundation of Shaanxi Province ! 97G14
文摘The thesis introduces various characteristic wavelet bases used in non-stationary machinery equipment diagnosis, then discusses genetic wavelets and harmonic wavelets and their practical application respectively in fault diagnosis of an internal combustion engine and in orbits extracting (analysis) of rotating machinery.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Plan of China
文摘The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.
文摘Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.