Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner Hartree-Fock equations are solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced ...Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner Hartree-Fock equations are solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus 160 is investigated as an example. The resulting groundstate properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner-Hartree-Fock results and much closer to the experimental data. This opens the door for ab initio covariant investigations of heavy nuclei.展开更多
Relativistic Hartree-Fock equations are derived for an infinite system ofmesons and baryons based on thermo field dynamics and Walecka’s model.The proper-ties of nuclear and neutron matter are studied for various tem...Relativistic Hartree-Fock equations are derived for an infinite system ofmesons and baryons based on thermo field dynamics and Walecka’s model.The proper-ties of nuclear and neutron matter are studied for various temperatures and densities.展开更多
Validity of adiabatic assumption is discussed within the constrained Hartree-Fock theory for self-conjugate nucleus ~(72)Kr.It is shown that the adiabatic assumption does not provide a correct description for the natu...Validity of adiabatic assumption is discussed within the constrained Hartree-Fock theory for self-conjugate nucleus ~(72)Kr.It is shown that the adiabatic assumption does not provide a correct description for the nature of nucleus when a configuration change is involved.The excited Hartree-Fock states and the continuously-connected constrained Hartree-Fock states are given for the first time by applying the configuration dictated constrained Hartree-Fock theory with Gogny force.The importance of self-consistency between the mean-field and the single particle wave functions is emphasized even when a small number of nucleons are involved in the configuration change.展开更多
The equation of state of neutron stars is studied in the newly developed density dependent relativistic Hartree-Fock (DDRHF) theory with the effective interaction PKO1 and applied to describe the properties of neutron...The equation of state of neutron stars is studied in the newly developed density dependent relativistic Hartree-Fock (DDRHF) theory with the effective interaction PKO1 and applied to describe the properties of neutron stars. The results are compared with the recent observational data of compact stars and those calculated with the relativistic mean field (RMF) effective interactions. The maximum mass of neutron stars calculated with PKO1 is about 2.45 M ⊙, which consists with high pulsar mass from PSR B1516+02B recently reported. The influence of Fock terms on the cooling of neutron stars is discussed as well.展开更多
Leadership is a complex process.It is one of the most researched areas around the world.It has gained importance in every walk of life from politics to business and from education to social organizations.According to ...Leadership is a complex process.It is one of the most researched areas around the world.It has gained importance in every walk of life from politics to business and from education to social organizations.According to the study of"Leadership in Adult Education Venues",here has a much more clear recognition of leadership:leadership is a process whereby an individual influences a group of individuals to achieve a common goal.There are many approaches of leadership throughout the study of this class,the three theories of leadership I choose to describe in this paper are:Leader-Member Exchange(LMX)Theory,Transformational Leadership,and Team Leadership.展开更多
The role of tensor force on the collision dynamics of16O+16O is investigated in the framework of a fully three-dimensional timedependent Hartree-Fock theory.The calculations are performed with modern Skyrme energy fun...The role of tensor force on the collision dynamics of16O+16O is investigated in the framework of a fully three-dimensional timedependent Hartree-Fock theory.The calculations are performed with modern Skyrme energy functional plus tensor terms.Particular attention is given on the analysis of dissipation dynamics in heavy-ion collisions.The energy dissipation is found to decrease as an initial bombarding energy increases in deep-inelastic collisions for all the Skyrme parameter sets studied here because of the competition between the collective motion and the single-particle degrees of freedom.We reveal that the tensor forces may either enhance or reduce the energy dissipation depending on the different parameter sets.The fusion cross section without tensor force overestimates the experimental value by about 25%,while the calculation with tensor force T11 has good agreement with experimental cross section.展开更多
内斯比特(KateNesbitt)在她的Theorizing A New Agenda for Architecture,An Anthology of Architectural Theory,1965~1995一书中较为全面地介绍了当代西方建筑理论界所关心的主要问题及其相关的思考。对于这些问题,国内建筑理论界也...内斯比特(KateNesbitt)在她的Theorizing A New Agenda for Architecture,An Anthology of Architectural Theory,1965~1995一书中较为全面地介绍了当代西方建筑理论界所关心的主要问题及其相关的思考。对于这些问题,国内建筑理论界也有自己的认识。该文通过对两者的比较,试图理清建筑理论的基本意义,那就是提出问题并引起思考。展开更多
The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theor...The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theory. The desired results for micromorphic continuum mechanics and couple stress theory are naturally obtained via direct transitions and reductions from the coupled conservation law of energy for micropolar continuum theory, respectively. The basic balance laws and equations for micromorphic continuum mechanics and couple stress theory are constituted by combining these results derived here and the traditional conservation laws and equations of mass and microinertia and the entropy inequality. The incomplete degrees of the former related continuum theories are clarified. Finally, some special cases are conveniently derived.展开更多
This study involves initial Hartree-Fock and Density Functional theory calculations onthe molecular recognition of the cyclodextrins. The α-cyclodextrin-acetophenone complexationsystem was investigated with PM3, HF/...This study involves initial Hartree-Fock and Density Functional theory calculations onthe molecular recognition of the cyclodextrins. The α-cyclodextrin-acetophenone complexationsystem was investigated with PM3, HF/3-21G* and B3LYP/3-21G* methods. The results indicatedthat the inclusion orientation in which the acetyl group of the acetophenone points towards thesecondary hydroxyls of the a-cyclodextrin was preferable in energy. The steric effect wassupposed as the physical reason of such a behavior Hence, the simple rule the anti-parallelarrangement of the dipoles of the host and guest molecules in the cyclodextrin complexqtion is notgenerally applicable.展开更多
The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing co...The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.展开更多
The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking...The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking the proton pseudo-spin partners(π2s1/2, π1d3/2) as candidates, the systematic restoration of PSS along both isotonic chains is found from sulphur(S) to nickel(Ni), while an obvious PSS violation from silicon(Si) to sulphur is discovered near the drip lines. The effects of the tensor force components are investigated, introduced naturally by the Fock terms, which can only partially interpret the systematics from calcium to nickel, whereas they fail for the overall trends. Further analysis following the Schr?dinger-like equation of the lower component of Dirac spinor shows that contributions from the Hartree terms dominate the overall systematics of the PSS restoration. Such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. In particular, the PSS violation is found to tightly relate to the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur.展开更多
In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at ...In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.展开更多
By basic equations, two basic theories are presented: 1.Theory of stock's value v *(t)=v *(0) exp (ar * 2t); 2. Theory of conservation of stock's energy. Let stock's energy be defined as a q...By basic equations, two basic theories are presented: 1.Theory of stock's value v *(t)=v *(0) exp (ar * 2t); 2. Theory of conservation of stock's energy. Let stock's energy be defined as a quadratic function of stock's price v and its derivative , =Av 2+ Bv+C 2+Dv, under the constraint of basic equation, the problem was reduced to a problem of constrained optimization along optimal path. Using Lagrange multiplier and Euler equation of variation method, it can be proved that keeps conservation for any v,. The application of these equations and theories on judgement and analysis of tendency of stock market are given, and the judgement is checked to be correct by the recorded tendency of Shenzhen and Shanghai stock markets.展开更多
This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhe...This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to e...BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
The authors discuss contradictions between the principal branches of the modern physical picture of the universe. Space and time have been shown in the Unitary Quantum Theory (UQT) not to be connected one with the oth...The authors discuss contradictions between the principal branches of the modern physical picture of the universe. Space and time have been shown in the Unitary Quantum Theory (UQT) not to be connected one with the other, unlike in the Special Theory of Relativity. In UQT, time becomes Newtonian again, and the growth of the particle’s mass with growing speed proceeds from other considerations of physics. Unlike the quantum theory, the modern gravitation theory (the general theory of relativity) is not confirmed by experiments and needs to be considerably revised.展开更多
基金Supported by the National Basic Research Program of China No 2013CB834400the National Natural Science Foundation of China under Grants Nos 11175002,11335002,11405090,11375015 and 11621131001+3 种基金the Research Fund for the Doctoral Program of Higher Education under Grant No 20110001110087the DFG cluster of excellence "Origin and Structure of the Universe"(www.universe-cluster.de)the CPSC under Grant No 2012M520100the RIKEN IPA and iTHES projects
文摘Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner Hartree-Fock equations are solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus 160 is investigated as an example. The resulting groundstate properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner-Hartree-Fock results and much closer to the experimental data. This opens the door for ab initio covariant investigations of heavy nuclei.
文摘Relativistic Hartree-Fock equations are derived for an infinite system ofmesons and baryons based on thermo field dynamics and Walecka’s model.The proper-ties of nuclear and neutron matter are studied for various temperatures and densities.
基金The project supported in part by the Japanese Society for the Promotion of Science (JSPS) and National Natural Science Foundation of China as the bilateral program between Japan and China.One of the authors (E.G.Zhao) acknowledges the support by National
文摘Validity of adiabatic assumption is discussed within the constrained Hartree-Fock theory for self-conjugate nucleus ~(72)Kr.It is shown that the adiabatic assumption does not provide a correct description for the nature of nucleus when a configuration change is involved.The excited Hartree-Fock states and the continuously-connected constrained Hartree-Fock states are given for the first time by applying the configuration dictated constrained Hartree-Fock theory with Gogny force.The importance of self-consistency between the mean-field and the single particle wave functions is emphasized even when a small number of nucleons are involved in the configuration change.
基金Supported by National Natural Science Foundation of China (10435010, 10775004, 10221003)Major State Basic Research Development Program (2007CB815000)
文摘The equation of state of neutron stars is studied in the newly developed density dependent relativistic Hartree-Fock (DDRHF) theory with the effective interaction PKO1 and applied to describe the properties of neutron stars. The results are compared with the recent observational data of compact stars and those calculated with the relativistic mean field (RMF) effective interactions. The maximum mass of neutron stars calculated with PKO1 is about 2.45 M ⊙, which consists with high pulsar mass from PSR B1516+02B recently reported. The influence of Fock terms on the cooling of neutron stars is discussed as well.
文摘Leadership is a complex process.It is one of the most researched areas around the world.It has gained importance in every walk of life from politics to business and from education to social organizations.According to the study of"Leadership in Adult Education Venues",here has a much more clear recognition of leadership:leadership is a process whereby an individual influences a group of individuals to achieve a common goal.There are many approaches of leadership throughout the study of this class,the three theories of leadership I choose to describe in this paper are:Leader-Member Exchange(LMX)Theory,Transformational Leadership,and Team Leadership.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175252,11121403,11120101005,11211120152 and11275248)the National Key Basic Research Program of China(Grant No.2013CB834400)+2 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KJCX2-EW-N01)the President Fund of UCASthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China,the Open Project Program of State Key Laboratory of Theoretical Physics and the Institute of Theoretical Physics,Chinese Academy of Sciences,China(Grant No.Y4KF041CJ1)
文摘The role of tensor force on the collision dynamics of16O+16O is investigated in the framework of a fully three-dimensional timedependent Hartree-Fock theory.The calculations are performed with modern Skyrme energy functional plus tensor terms.Particular attention is given on the analysis of dissipation dynamics in heavy-ion collisions.The energy dissipation is found to decrease as an initial bombarding energy increases in deep-inelastic collisions for all the Skyrme parameter sets studied here because of the competition between the collective motion and the single-particle degrees of freedom.We reveal that the tensor forces may either enhance or reduce the energy dissipation depending on the different parameter sets.The fusion cross section without tensor force overestimates the experimental value by about 25%,while the calculation with tensor force T11 has good agreement with experimental cross section.
文摘内斯比特(KateNesbitt)在她的Theorizing A New Agenda for Architecture,An Anthology of Architectural Theory,1965~1995一书中较为全面地介绍了当代西方建筑理论界所关心的主要问题及其相关的思考。对于这些问题,国内建筑理论界也有自己的认识。该文通过对两者的比较,试图理清建筑理论的基本意义,那就是提出问题并引起思考。
文摘The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theory. The desired results for micromorphic continuum mechanics and couple stress theory are naturally obtained via direct transitions and reductions from the coupled conservation law of energy for micropolar continuum theory, respectively. The basic balance laws and equations for micromorphic continuum mechanics and couple stress theory are constituted by combining these results derived here and the traditional conservation laws and equations of mass and microinertia and the entropy inequality. The incomplete degrees of the former related continuum theories are clarified. Finally, some special cases are conveniently derived.
文摘This study involves initial Hartree-Fock and Density Functional theory calculations onthe molecular recognition of the cyclodextrins. The α-cyclodextrin-acetophenone complexationsystem was investigated with PM3, HF/3-21G* and B3LYP/3-21G* methods. The results indicatedthat the inclusion orientation in which the acetyl group of the acetophenone points towards thesecondary hydroxyls of the a-cyclodextrin was preferable in energy. The steric effect wassupposed as the physical reason of such a behavior Hence, the simple rule the anti-parallelarrangement of the dipoles of the host and guest molecules in the cyclodextrin complexqtion is notgenerally applicable.
基金the National Natural Science Foundation of China(No.U2032141)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-02)+4 种基金the Central Government Guidance Funds for Local Scientific and Technological Development,China(Guike ZY22096024)the Natural Science Foundation of Henan Province(No.202300410479)the Guizhou Provincial Science and Technology Projects(No.ZK[2022]203)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.
基金Supported by National Natural Science Foundation of China(11675065,11711540016)
文摘The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking the proton pseudo-spin partners(π2s1/2, π1d3/2) as candidates, the systematic restoration of PSS along both isotonic chains is found from sulphur(S) to nickel(Ni), while an obvious PSS violation from silicon(Si) to sulphur is discovered near the drip lines. The effects of the tensor force components are investigated, introduced naturally by the Fock terms, which can only partially interpret the systematics from calcium to nickel, whereas they fail for the overall trends. Further analysis following the Schr?dinger-like equation of the lower component of Dirac spinor shows that contributions from the Hartree terms dominate the overall systematics of the PSS restoration. Such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. In particular, the PSS violation is found to tightly relate to the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur.
基金supported by the National Natural Science Foundation of China under Grant Nos.12122401 and 12074007.
文摘In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter.
文摘By basic equations, two basic theories are presented: 1.Theory of stock's value v *(t)=v *(0) exp (ar * 2t); 2. Theory of conservation of stock's energy. Let stock's energy be defined as a quadratic function of stock's price v and its derivative , =Av 2+ Bv+C 2+Dv, under the constraint of basic equation, the problem was reduced to a problem of constrained optimization along optimal path. Using Lagrange multiplier and Euler equation of variation method, it can be proved that keeps conservation for any v,. The application of these equations and theories on judgement and analysis of tendency of stock market are given, and the judgement is checked to be correct by the recorded tendency of Shenzhen and Shanghai stock markets.
基金supported by the National Natural Science Foundation of China(82230117).
文摘This paper introduces a systems theory-driven framework to integration artificial intelligence(AI)into traditional Chinese medicine(TCM)research,enhancing the understanding of TCM’s holistic material basis while adhering to evidence-based principles.Utilizing the System Function Decoding Model(SFDM),the research progresses through define,quantify,infer,and validate phases to systematically explore TCM’s material basis.It employs a dual analytical approach that combines top-down,systems theory-guided perspectives with bottom-up,elements-structure-function methodologies,provides comprehensive insights into TCM’s holistic material basis.Moreover,the research examines AI’s role in quantitative assessment and predictive analysis of TCM’s material components,proposing two specific AIdriven technical applications.This interdisciplinary effort underscores AI’s potential to enhance our understanding of TCM’s holistic material basis and establishes a foundation for future research at the intersection of traditional wisdom and modern technology.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
文摘BACKGROUND The comprehension and utilization of timing theory and behavior change can offer a more extensive and individualized provision of support and treatment alternatives for primipara.This has the potential to enhance the psychological well-being and overall quality of life for primipara,while also furnishing healthcare providers with efficacious interventions to tackle the psychological and physiological obstacles encountered during the stages of pregnancy and postpartum.AIM To explore the effect of timing theory combined with behavior change on selfefficacy,negative emotions and quality of life in patients with primipara.METHODS A total of 80 primipara cases were selected and admitted to our hospital between August 2020 and May 2022.These cases were divided into two groups,namely the observation group and the control group,with 40 cases in each group.The nursing interventions differed between the two groups,with the control group receiving routine nursing and the observation group receiving integrated nursing based on the timing theory and behavior change.The study aimed to compare the pre-and post-nursing scores of Chinese Perceived Stress Scale(CPSS),Edinburgh Postpartum Depression Scale(EPDS),Self-rating Anxiety Scale(SAS),breast milk knowledge,self-efficacy,and SF-36 quality of life in both groups.RESULTS After nursing,the CPSS,EPDS,and SAS scores of the two groups was significantly lower than that before nursing,and the CPSS,EPDS,and SAS scores of the observation group was significantly lower than that of the control group(P=0.002,P=0.011,and P=0.001 respectively).After nursing,the breastfeeding knowledge mastery,selfefficacy,and SF-36 quality of life scores was significantly higher than that before nursing,and the breastfeeding knowledge mastery(P=0.013),self-efficacy(P=0.008),and SF-36 quality of life(P=0.011)scores of the observation group was significantly higher than that of the control group.CONCLUSION The integration of timing theory and behavior change integrated theory has been found to be an effective approach in alleviating negative mood and stress experienced by primipara individuals,while also enhancing their selfefficacy and overall quality of life.This study focuses on the key concepts of timing theory,behavior change,primipara individuals,negative mood,and quality of life.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
文摘The authors discuss contradictions between the principal branches of the modern physical picture of the universe. Space and time have been shown in the Unitary Quantum Theory (UQT) not to be connected one with the other, unlike in the Special Theory of Relativity. In UQT, time becomes Newtonian again, and the growth of the particle’s mass with growing speed proceeds from other considerations of physics. Unlike the quantum theory, the modern gravitation theory (the general theory of relativity) is not confirmed by experiments and needs to be considerably revised.