Existing water hazard detection methods usually fail when the features of water surfaces are greatly changed by the surroundings, e.g., by a change in illumination. This paper proposes a novel algorithm to robustly de...Existing water hazard detection methods usually fail when the features of water surfaces are greatly changed by the surroundings, e.g., by a change in illumination. This paper proposes a novel algorithm to robustly detect different kinds of water hazards for autonomous navigation. Our algorithm combines traditional machine learning and image segmentation and uses only digital cameras, which are usually affordable, as the visual sensors. Active learning is used for automatically dealing with problems caused by the selection, labeling and classification of large numbers of training sets. Mean-shift based image segmentation is used to refine the final classification. Our experimental results show that our new algorithm can accurately detect not only ‘common’ water hazards, which usually have the features of both high brightness and low texture, but also ‘special’ water hazards that may have lots of ripples or low brightness.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60505017 and 60534070)the Natural Science Foundation of Zhejiang Province, China (No. 2005C14008)
文摘Existing water hazard detection methods usually fail when the features of water surfaces are greatly changed by the surroundings, e.g., by a change in illumination. This paper proposes a novel algorithm to robustly detect different kinds of water hazards for autonomous navigation. Our algorithm combines traditional machine learning and image segmentation and uses only digital cameras, which are usually affordable, as the visual sensors. Active learning is used for automatically dealing with problems caused by the selection, labeling and classification of large numbers of training sets. Mean-shift based image segmentation is used to refine the final classification. Our experimental results show that our new algorithm can accurately detect not only ‘common’ water hazards, which usually have the features of both high brightness and low texture, but also ‘special’ water hazards that may have lots of ripples or low brightness.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.