期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Cooperative Security Monitoring Mechanism Aided by Optimal Multiple Slave Cluster Heads for UASNs
1
作者 Yougan Chen Wei Wang +3 位作者 Xiang Sun Yi Tao Zhenwen Liu Xiaomei Xu 《China Communications》 SCIE CSCD 2023年第5期148-169,共22页
As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this... As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme. 展开更多
关键词 underwater acoustic sensor networks data security cluster head nodes optimal location distribution of multiple slave cluster head nodes
下载PDF
Unseen head pose prediction using dense multivariate label distribution 被引量:1
2
作者 Gao-li SANG Hu CHEN +1 位作者 Ge HUANG Qi-jun ZHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期516-526,共11页
Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previous... Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previously seen head poses). To predict head poses that are not seen in the training data, some regression-based methods have been proposed. However, they focus on estimating continuous head pose angles, and thus do not systematically evaluate the performance on predicting unseen head poses. In this paper, we use a dense multivariate label distribution(MLD) to represent the pose angle of a face image. By incorporating both seen and unseen pose angles into MLD, the head pose predictor can estimate unseen head poses with an accuracy comparable to that of estimating seen head poses. On the Pointing'04 database, the mean absolute errors of results for yaw and pitch are 4.01?and 2.13?, respectively. In addition, experiments on the CAS-PEAL and CMU Multi-PIE databases show that the proposed dense MLD-based head pose estimation method can obtain the state-of-the-art performance when compared to some existing methods. 展开更多
关键词 head pose estimation Dense multivariate label distribution Sampling intervals Inconsistent labels
原文传递
Determination of groundwater flow regimes based on the spatial non-local distribution of hydraulic gradient:Model and validation
3
作者 Xiu-xuan Wang Jia-zhong Qian +2 位作者 Lei Ma Qian-kun Luo Guan-qun Zhou 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第2期299-307,共9页
The groundwater flow in natural aquifers can change from the Darcy flow to the non-Darcian flow due to a variety of causes,such as the increase of the Reynolds number in the highly permeable media or the decrease of t... The groundwater flow in natural aquifers can change from the Darcy flow to the non-Darcian flow due to a variety of causes,such as the increase of the Reynolds number in the highly permeable media or the decrease of the hydraulic gradient below a threshold in the low-permeability media,while the representative flow regime cannot be reliably determined using the traditional criteria.To address this challenge,this paper proposes a new term called the equivalent hydraulic gradient(EHG)by generalizing the differential form of the Darcy’s law using a spatial integral of the upstream hydraulic head.The nonlocal spatial variation of the hydraulic head difference between upstream and downstream zones is assumed to be the potential cause of the transition of the groundwater flow regimes.This assumption is analogous to the common assumption used for quantifying the anomalous pollutant transport in the geological media.Applications of this idea show that the EHG concept could distinguish three main flow regimes,namely the Super-Darcy flow,the Darcy flow,and the Sub-Darcy flow,although the Super-Darcy flow regime is rarely observed in the laboratory column flow experiments.Results of this study therefore shed lights on the interpretation of the fundamental dynamics of the groundwater moving in various heterogeneous aquifers,and may lead to the rebuilding of the hydrodynamics of the surface water,the groundwater,and the soil. 展开更多
关键词 Hydraulic head distribution spatially non-local effect flow regime Forchheimer number Reynolds number
原文传递
Influence of permeability anisotropy of seepage flow on the tunnel face stability 被引量:2
4
作者 Qiguang Di Pengfei Li +1 位作者 Mingju Zhang Jie Wu 《Underground Space》 SCIE EI CSCD 2023年第1期1-14,共14页
This paper focuses on the influence of permeability anisotropy of seepage flow on the face stability for a shied tunnel.An analytical model has been proposed to present the hydraulic head distribution around the tunne... This paper focuses on the influence of permeability anisotropy of seepage flow on the face stability for a shied tunnel.An analytical model has been proposed to present the hydraulic head distribution around the tunnel face in the anisotropic ground,considering the difference of permeability coefficient in the horizontal direction and the vertical direction.The rationality of the proposed model is ver-ified by a series of numerical simulations.Then,an analytical model of face stability for a tunnel under the anisotropic seepage has been established based on the limit analysis upper bound method.Comparisons of the analytical solutions and the numerical simulations are conducted,and the limit support pressure of the two methods is consistent.The effect of permeability anisotropy and water pressure on the stability of the tunnel face is analyzed through the three-dimensional analytical solution.Anisotropy of permeability has a significant impact on the stability of the tunnel face,and its impact gradually decreases.It can also be found that the water pressure coefficient of the tunnel face has a significant effect on the limit support pressure and the failure area when the ratio of the horizontal permeability to the vertical permeability is large. 展开更多
关键词 Seepage flow Hydraulic head distribution Permeability anisotropy Shield tunnel Water pressure
原文传递
Three-dimensional theoretical analysis of seepage field in front of shield tunnel face 被引量:3
5
作者 Qiguang Di Pengfei Li +3 位作者 Mingju Zhang Caixia Guo Fan Wang Jie Wu 《Underground Space》 SCIE EI 2022年第4期528-542,共15页
To evaluate hydraulic head distribution in front of a shield tunnel in a saturated soil layer,theoretical analysis and numerical simulations are carried out in this study.Based on the partial differential equilibrium ... To evaluate hydraulic head distribution in front of a shield tunnel in a saturated soil layer,theoretical analysis and numerical simulations are carried out in this study.Based on the partial differential equilibrium equation of seepage flow,a three-dimensional(3D)theoretical analytical model of the shield tunnel face and the seepage field in front of it is established using the eigenfunction and the Fourier series expansion methods,and the hydraulic head calculation formula is derived.Combined with engineering cases,the theoretical analysis results and the 3D numerical simulation results are compared and analyzed.The effect of the water pressure of the tunnel face on the hydraulic head distribution is also analyzed.The results of the proposed analytical solution are in agreement with those of the numerical simulation solutions;moreover,the proposed analytical solution requires less time to calculate the seepage hydraulic head than the numerical simulation.The ratio of the initial water table to the diameter(D)of tunnel face has a more significant impact on the hydraulic head distribution at a position 0.5D above the tunnel vault.When the water pressure on the tunnel face is not considered,the values of the hydraulic head are significantly underestimated. 展开更多
关键词 Seepage flow Hydraulic head distribution Shield tunnel Numerical simulation Water pressure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部