在流式识别方法中,分块识别破坏并行性且消耗资源较大,而限制自注意力机制的上下文识别很难获得所有信息.由此,文中提出轻量化端到端声学架构(CFLASH-Transducer).为了获取细腻的局部特征,采用轻量化的FLASH(Fast Linear Attention with...在流式识别方法中,分块识别破坏并行性且消耗资源较大,而限制自注意力机制的上下文识别很难获得所有信息.由此,文中提出轻量化端到端声学架构(CFLASH-Transducer).为了获取细腻的局部特征,采用轻量化的FLASH(Fast Linear Attention with a Single Head)与卷积神经网络块结合.卷积块中采用Inception V2网络,提取语音信号多尺度的局部特征.再通过Coordinate Attention机制捕获特征的位置信息和多通道之间的相互关联.此外,采用深度可分离卷积,用于特征增强和层间平滑过渡.为了使其可流式化处理音频,采用RNN-T(Recurrent Neural Network Transducer)架构进行训练与解码.将当前块已经计算的全局注意力作为隐变量,传入后续块中,串联各块信息,保留训练的并行性和相关性,并且不会随着序列的增长而消耗计算资源.在开源数据集THCHS30上进行训练与测试,CFLASH-Transducer取得较高的识别率.并且相比离线识别,流式识别精度损失不超过1%.展开更多
文摘在流式识别方法中,分块识别破坏并行性且消耗资源较大,而限制自注意力机制的上下文识别很难获得所有信息.由此,文中提出轻量化端到端声学架构(CFLASH-Transducer).为了获取细腻的局部特征,采用轻量化的FLASH(Fast Linear Attention with a Single Head)与卷积神经网络块结合.卷积块中采用Inception V2网络,提取语音信号多尺度的局部特征.再通过Coordinate Attention机制捕获特征的位置信息和多通道之间的相互关联.此外,采用深度可分离卷积,用于特征增强和层间平滑过渡.为了使其可流式化处理音频,采用RNN-T(Recurrent Neural Network Transducer)架构进行训练与解码.将当前块已经计算的全局注意力作为隐变量,传入后续块中,串联各块信息,保留训练的并行性和相关性,并且不会随着序列的增长而消耗计算资源.在开源数据集THCHS30上进行训练与测试,CFLASH-Transducer取得较高的识别率.并且相比离线识别,流式识别精度损失不超过1%.