An efficient generic static headspace gas chromatography (HSGC) method was developed, optimized and validated for the routine determination of several residual solvents (RS) in drug substance, using a strategy wit...An efficient generic static headspace gas chromatography (HSGC) method was developed, optimized and validated for the routine determination of several residual solvents (RS) in drug substance, using a strategy with two sets of calibration. Dimethylsulfoxide (DMSO) was selected as the sample diluent and internal standards were used to minimize signal variations due to the preparative step. A gas chroma- tograph from Agilent Model 6890 equipped with flame ionization detector (FID) and a DB-624 (30 m × 0.53 mm i.d., 3.00 μm film thickness) column was used. The inlet split ratio was 5:1. The influ- encing factors in the chromatographic separation of the analytes were determined through a fractional factorial experimental design. Significant variables: the initial temperature (IT), the final temperature (FT) of the oven and the carrier gas flow rate (F) were optimized using a central composite design. Response transformation and desirability function were applied to find out the optimal combination of the chromatographic variables to achieve an adequate resolution of the analytes and short analysis time. These conditions were 30 ℃ for IT, 158 ℃ for FT and 1.90 mL/min for F. The method was proven to be accurate, linear in a wide range and very sensitive for the analyzed solvents through a comprehensive validation according to the ICH guidelines.展开更多
An analytical method for the quantification of residual solvents in annatto extracts, natural food colorants, was established using a static headspace gas chromatography (HSGC) coupled with a flame ionization detector...An analytical method for the quantification of residual solvents in annatto extracts, natural food colorants, was established using a static headspace gas chromatography (HSGC) coupled with a flame ionization detector (FID). As a sample diluent in a headspace sampling, dimethylformamide (DMF) was selected owing to its high capacity for dissolving both bixin-based and norbixin-based annatto extracts. The quantification of residual solvents was performed using the external standard method. The linearity of the calibration curves was assured with relative coefficients (R2) that were greater than 0.999. The recoveries of all standard solvents spiked in the annatto extracts were in the range from 95.1% to 107.1% to verify the accuracy and the relative standard deviation (RSD%) values (n = 3) were in the range from 0.57% to 3.31%. The quantification limits (QL) were sufficiently lower than the limits specified by Joint FAO/WHO Expert Committee on Food Additives (JECFA). With the established HSGC method, six residual solvents (methanol, ethanol, 2-propanol, acetone, ethyl acetate, and hexane) in 23 commercial annatto-extract products that consist of seven bixin-based and 16 norbixin-based products were quantified. The levels of residual ethyl acetate and hexane in all products were lower than the specified limits of JECFA. However, three samples of bixin-based products showed higher levels of residual 2-propanol (approximately 313.9 - 427.7 ppm) than the specified limit. Other bixin products also showed higher concentrations of residual methanol (approximately 166.6 - 394.7 ppm) and residual acetone (approximately 75.2 - 179.8 ppm) than the limits of JECFA. In the case of norbixin-based products, nine samples showed higher levels of residual acetone (approximately 42.6 - 139.5 ppm) than the limits of JECFA. This is the first survey of residual solvents in annatto extracts using the validated HSGC method.展开更多
Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro...Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.展开更多
This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application ...This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application prospect of headspace gas chromatography in analytical chemistry in the future.展开更多
To study effect of C2H2 and change of headspace gas on N2O emission, denitrification, as well as CO2emission, slumes of an agricultural soil were anaerobically incubated for 7 da3’s at 25 ℃. Both N2O reduction and C...To study effect of C2H2 and change of headspace gas on N2O emission, denitrification, as well as CO2emission, slumes of an agricultural soil were anaerobically incubated for 7 da3’s at 25 ℃. Both N2O reduction and CO2 emissions were inhibited by the addition of 100 mL L-1 of C2H2. However, the inhibition to CO2 emission was alleviated by the replacement of headspace gas, and the N2O emission was enhanced by the replacement. Acetylene disappeared evidently from the soil slumes during the incubation. Consequently results obtained from the traditional C2H2 blocking technique for determination of denitrification rate, especially in a long-time incubation, should be explained with care because of its side effect existing in the incubation environments without change of headspace gas. To reduce the possible side effect on the processes other than denitrification, it is suggested that headspace gas should be replaced several times during a long-time incubation.展开更多
[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) com...[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.展开更多
In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile com...In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.展开更多
Volatile components from Rhizoma Alpiniae Officinarum were respectively extracted by three methods including hydrodistillation, headspace solid-phase microextraction (HS-SPME) and diethyl ether extraction. A total o...Volatile components from Rhizoma Alpiniae Officinarum were respectively extracted by three methods including hydrodistillation, headspace solid-phase microextraction (HS-SPME) and diethyl ether extraction. A total of 40 (hydrodistillation), 32 (HS-SPME) and 37 (diethyl ether extraction) compounds were respectively identified by gas chromatography-mass spectrometry (GC/MS) and 22 compounds were overlapped, including β-farnesene, 7-muurolene, 2,6-dimethyl-6- (4-methyl-3-pentenyl)bicyclo[3.1.1]hept-2-ene, eucalyptol and cadina-1(10), 4-diene and so forth, varying in relative contents. HS-SPME is fast, sample saving and solvent-free and it also can achieve similar profiles as those from hydrodistillation and solvent extraction. Therefore, it can be the priority for extracting volatile components from medicinal plants.展开更多
The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spe...The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.展开更多
The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K ...The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K were measured by headspace gas chromatography(HSGC).These data was compared with the predictions value by conductor-like screening model for realistic solvation(COSMO-RS).Moreover,the calculated data of COSMO-RS and Non-Random Two-Liquids(NRTL)models showed good agreement with the experimental data.It was found that the three resin acids inhibited the volatility of a-pinene,camphene and longifolene and resulted in the decrease of total pressure.Moreover,HE(HB)contributes the most to the excess enthalpy and the hydrogen bonding interaction is the dominant intermolecular force of a-pinene,camphene and longifolene with the three resin acids.In addition,the geometric structures optimization and binding energy were obtained by the DFT to further illustrate the hydrogen bonding interaction and the effects of the addition of the three resin acids on the isothermal VLE.展开更多
The aim of this work was to distinguish volatile organic compound(VOC) profiles of royal jelly(RJ) from different nectar plants. Headspace solid-phase microextraction(HS-SPME) was used to extract VOCs from raw R...The aim of this work was to distinguish volatile organic compound(VOC) profiles of royal jelly(RJ) from different nectar plants. Headspace solid-phase microextraction(HS-SPME) was used to extract VOCs from raw RJ harvested from 10 nectar plants in flowering seasons. Qualitative and semi-quantitative analysis of VOCs extracts were performed by gas chromatography-mass spectrometry(GC-MS). Results showed that VOC profiles of RJ from the samples were rich in acid, ester and aldehyde compound classes, however, contents of them were differential, exemplified by the data from acetic acid, benzoic acid methyl ester, hexanoic acid and octanoic acid. As a conclusion, these four VOCs can be used for distinguishing RJ harvested in the seasons of different nectar plants.展开更多
Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyze...Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyzed using gas chromatography-mass spectrometry (GC-MS). Then a qualitative analysis was made according to the standard database provided by the National Institute of Standards and Technology (NIST) and the relative contents of each constituent were calculated using the peak area normalization method. Results: A total of 59 compounds were identified from the mugwort leaves from Qichun and 51 compounds were identified from the mugwort leaves from Nanyang. These mainly include monoterpenoids, sesquiterpenoids, C^HvOz and other compounds involving the aldehyde, ketone, alkane and benzene. The mugwort leaves from Qichun and Nanyang share 32 common volatile constituents. The chromatographic peak area of identified compounds accounting for 96.38% of GC-MS total chromatographic peak areain Qichun mugwort leaves, versus 95.54% of that in Nanyang mugwort leaves. Conclusion: The headspace heating extraction combined with GC-MS technology can evidently display similarities and differences of volatile constituents in mugwort leaves produced in different areas and thus provide scientific basis for the quality and screening of mugwort leaves.展开更多
[Objective] This research aimed to study the pre-treatment conditions of head space so as to establish a HS-GC determination method, which is suitable for China's conditions, for trace volatile organic compounds i...[Objective] This research aimed to study the pre-treatment conditions of head space so as to establish a HS-GC determination method, which is suitable for China's conditions, for trace volatile organic compounds in drinking water. [Method]The preparation method of head space was adopted for the volatile organic compounds in drinking water. [Result] The 20 kinds of volatile organic compounds in drinking water all could be detected simultaneously by using HS-GC-FID method,and they all could be separated well. The HS-GC-FID method could analyze the detected substances qualitatively and quantitatively. In addition, this detection method was characterized by larger linear range of concentration, higher precision, higher detection limit and higher recovery rate. [Conclusion] Under certain conditions, HSGC can reduce the loss of volatile organic compound in drinking water and improve the sensitivity of detection. Moreover, the detection results meet the requirements by quality control.展开更多
The volatile flavor compounds of Jin Xiang garlic and Tai’an garlic in chemical composition were detected and analyzed and the contents of them were compared and determinated. The volatile constituents of Jin Xiang g...The volatile flavor compounds of Jin Xiang garlic and Tai’an garlic in chemical composition were detected and analyzed and the contents of them were compared and determinated. The volatile constituents of Jin Xiang garlic and Tai’an garlic were compared and analyzed by automatic static headspace and gas chromatography-mass spectrometry. Qualitative analysis of samples was made through the analysis of gas chromatography-mass spectrometry and NIST mass spectral library computer retrieval, and quantitative analysis was made by using area normalization method. The analysis results show that the slight difference of the volatile flavor compounds was detected in different places of origin garlic and Jin Xiang garlic was detected more total sulfur-containing compounds than Tai’an garlic. Meanwhile, the contents of sulfur compounds of the fresh garlic were more than the stored garlic and there were significant differences between them. The tests results indicated that flavor substances’ types were slightly different between Jin Xiang garlic and Tai’an garlic, and regional differences cannot affect the garlic flavor substances type. Jin Xiang garlic has more obvious flavor substances than Tai’an garlic which play a decisive role in the garlic flavor, such as 1,3-dithiane, and allyl trisulfide and allyl disulfide and diallyl tetrasulphide. The result of this research indicates that Automatic static headspace and gas chromatography-mass spectrometry is a fast, easy, efficient and accurate method to analyze and identify the volatile flavor components of garlic.展开更多
In this study, the comparison of Elsholtzia ciliata volatile compounds from the stem (with leaf) and flower was acquired. The volatile compounds of these two parts from Elsholtzia ciliata aerial parts were respectivel...In this study, the comparison of Elsholtzia ciliata volatile compounds from the stem (with leaf) and flower was acquired. The volatile compounds of these two parts from Elsholtzia ciliata aerial parts were respectively analyzed by a rapid and convenient static headspace injection technique coupled with gas chromatography-mass spectrometry and the relative contents of each constituent between the two different parts were determined by peak area normalization. 61 compounds were identified in the stem (with leaf) and flower, among which 39 components simultaneously exist. 47 and 53 compounds were separated and identified in the volatile compounds from the different parts of Elsholtzia ciliata, respectively. There were differences among some volatile constituents of the two parts, but the main constituents were all Elsholtzia ketone, caryophyllene, 3-octanol and Dehydroelsholtzia ketone. The most abundant components in the stem (with leaf) included Elsholtzia ketone (84.20%), caryophyllene (4.3%) and 3-octanol (3.11%), while Elsholtzia ketone (88.03%), caryophyllene (3.33%) and 3-octanol (1.53%) were the main components in the flower. 8 single constituents were identified in the stem (with leaf) volatiles including 3-heptanone and linalool, while 14 constituents only including 2-methylbutanoic acid and Perillene have been found in the flower volatiles. Elsholtzia ketone was the main compound, and its concentration was significantly higher than other substances (>80% of the total oils in Elsholtzia ciliata). The study provided an important scientific base for the further utilization of Elsholtzia ciliata resources and may be helpful for systematically understanding the constituents of volatile compounds of Elsholtzia ciliata.展开更多
[Objectives]This study was conducted to explore the effects of grafting on volatile compounds in bitter gourd fruit.[Methods]The volatile compounds and relative contents of grafted and non-grafted fruit were analyzed ...[Objectives]This study was conducted to explore the effects of grafting on volatile compounds in bitter gourd fruit.[Methods]The volatile compounds and relative contents of grafted and non-grafted fruit were analyzed by headspace solid phase micro-extraction with gas chromatography-mass spectrometry.[Results]There were 59 volatile compounds in Haiyan No.2S,including six unique compounds.There were 58 volatile compounds in Haiyan No.2J,including five unique compounds.[Conclusions]This study provides a scientific basis for further analysis of bitter gourd flavor regulation mediated by grafting.展开更多
基金Universidad Nacional del Litoral (Projects CAI+D 2011 No.PI-50120110100025 LI)ANPCyT (Agencia Nacional de Promocin Científica y Tecnolgica,Project PICT 2011-0005) for financial support
文摘An efficient generic static headspace gas chromatography (HSGC) method was developed, optimized and validated for the routine determination of several residual solvents (RS) in drug substance, using a strategy with two sets of calibration. Dimethylsulfoxide (DMSO) was selected as the sample diluent and internal standards were used to minimize signal variations due to the preparative step. A gas chroma- tograph from Agilent Model 6890 equipped with flame ionization detector (FID) and a DB-624 (30 m × 0.53 mm i.d., 3.00 μm film thickness) column was used. The inlet split ratio was 5:1. The influ- encing factors in the chromatographic separation of the analytes were determined through a fractional factorial experimental design. Significant variables: the initial temperature (IT), the final temperature (FT) of the oven and the carrier gas flow rate (F) were optimized using a central composite design. Response transformation and desirability function were applied to find out the optimal combination of the chromatographic variables to achieve an adequate resolution of the analytes and short analysis time. These conditions were 30 ℃ for IT, 158 ℃ for FT and 1.90 mL/min for F. The method was proven to be accurate, linear in a wide range and very sensitive for the analyzed solvents through a comprehensive validation according to the ICH guidelines.
文摘An analytical method for the quantification of residual solvents in annatto extracts, natural food colorants, was established using a static headspace gas chromatography (HSGC) coupled with a flame ionization detector (FID). As a sample diluent in a headspace sampling, dimethylformamide (DMF) was selected owing to its high capacity for dissolving both bixin-based and norbixin-based annatto extracts. The quantification of residual solvents was performed using the external standard method. The linearity of the calibration curves was assured with relative coefficients (R2) that were greater than 0.999. The recoveries of all standard solvents spiked in the annatto extracts were in the range from 95.1% to 107.1% to verify the accuracy and the relative standard deviation (RSD%) values (n = 3) were in the range from 0.57% to 3.31%. The quantification limits (QL) were sufficiently lower than the limits specified by Joint FAO/WHO Expert Committee on Food Additives (JECFA). With the established HSGC method, six residual solvents (methanol, ethanol, 2-propanol, acetone, ethyl acetate, and hexane) in 23 commercial annatto-extract products that consist of seven bixin-based and 16 norbixin-based products were quantified. The levels of residual ethyl acetate and hexane in all products were lower than the specified limits of JECFA. However, three samples of bixin-based products showed higher levels of residual 2-propanol (approximately 313.9 - 427.7 ppm) than the specified limit. Other bixin products also showed higher concentrations of residual methanol (approximately 166.6 - 394.7 ppm) and residual acetone (approximately 75.2 - 179.8 ppm) than the limits of JECFA. In the case of norbixin-based products, nine samples showed higher levels of residual acetone (approximately 42.6 - 139.5 ppm) than the limits of JECFA. This is the first survey of residual solvents in annatto extracts using the validated HSGC method.
基金National Natural Science Foundation of China(Grant No.81872996)Natural Science Foundation of Tianjin of China(Grant No.20JCYBJC00060).
文摘Quality control of ginseng currently is mainly based on ginsenoside analysis,but rarely focuses on the volatile organic components.In the current work,an untargeted metabolomics approach,by headspace solid-phase micro-extraction gas chromatography/mass spectrometry(HS-SPME-GC/MS),was elaborated and further employed to holistically compare the compositional difference of the volatile components simultaneously from 12 Panax herbal medicines,which included P.ginseng(PG),P.quinquefolius(PQ),P.notoginseng(PN),red ginseng(PGR),P.ginseng leaf(PGL),P.quinquefolius leaf(PQL),P.notoginseng leaf(PNL),P.ginseng flower(PGF),P.quinquefolius flower(PQF),P.notoginseng flower(PNF),P.japonicus(PJ),and P.japonicus var.major(PJvm).Chromatographic separation was performed on an HP-5MS elastic quartz capillary column using helium as the carrier gas,enabling good resolution within 1 h.We were able to characterize totally 259 volatile compounds,including 82 terpenes(T),46 alcohols(Alc),29 ketones(K),25 aldehydes(Ald),21 esters(E),and the others.By analyzing 90 batches of ginseng samples based on the untargeted metabolomics workflows,236 differential ions were unveiled,and accordingly 36 differential volatile components were discovered.It is the first report that simultaneously compares the compositional difference of volatile components among 12 Panax herbal medicines,and useful information is provided for the quality control of ginseng aside from the well-known ginsenosides.
基金Supported by Special Fund for Scientific Research Project from the Education Department of Shaanxi Province(16JK1275)National Science and Technology Innovation Support Fund Project for College Students(16XK046)
文摘This paper briefly expounds the basic principle and classification of headspace gas chromatography,summarizes its application in food analysis,environmental analysis and medical analysis,and forecasts the application prospect of headspace gas chromatography in analytical chemistry in the future.
文摘To study effect of C2H2 and change of headspace gas on N2O emission, denitrification, as well as CO2emission, slumes of an agricultural soil were anaerobically incubated for 7 da3’s at 25 ℃. Both N2O reduction and CO2 emissions were inhibited by the addition of 100 mL L-1 of C2H2. However, the inhibition to CO2 emission was alleviated by the replacement of headspace gas, and the N2O emission was enhanced by the replacement. Acetylene disappeared evidently from the soil slumes during the incubation. Consequently results obtained from the traditional C2H2 blocking technique for determination of denitrification rate, especially in a long-time incubation, should be explained with care because of its side effect existing in the incubation environments without change of headspace gas. To reduce the possible side effect on the processes other than denitrification, it is suggested that headspace gas should be replaced several times during a long-time incubation.
基金Supported by Key Science and Technology Project of Gansu Province(1302NKDA028)Science and Technology Planning Project of Lanzhou(2010-1-239+2 种基金 2016-3-4)Talent Project of Lanzhou Science and Technology Bureau(2015-RC-87)Project of Science and Technology Cooperation between Gansu Academy of Agricultural Sciences and Local Areas(2017GAAS63)
文摘[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.
文摘In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.
基金supported by the Industry-University-Research Cooperation Program from Science and Technology Department of Guangdong Province (No:2010B090400533)the International Scientific and Technological Cooperation Program of China (No:2009DFA31230)
文摘Volatile components from Rhizoma Alpiniae Officinarum were respectively extracted by three methods including hydrodistillation, headspace solid-phase microextraction (HS-SPME) and diethyl ether extraction. A total of 40 (hydrodistillation), 32 (HS-SPME) and 37 (diethyl ether extraction) compounds were respectively identified by gas chromatography-mass spectrometry (GC/MS) and 22 compounds were overlapped, including β-farnesene, 7-muurolene, 2,6-dimethyl-6- (4-methyl-3-pentenyl)bicyclo[3.1.1]hept-2-ene, eucalyptol and cadina-1(10), 4-diene and so forth, varying in relative contents. HS-SPME is fast, sample saving and solvent-free and it also can achieve similar profiles as those from hydrodistillation and solvent extraction. Therefore, it can be the priority for extracting volatile components from medicinal plants.
基金supported by Hebei Provincial Key Research Projects(19227114D)the Vegetable Industry Innovation Team Project of Hebei Modern Agricultural Industrial Technology System(HBCT2018030208).
文摘The main purpose of this study was to investigate the effect of different lactic acid bacteria and yeast strains on the volatile composition of fermented sweet melon juice.Headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS)coupled with chemometrics was performed to identify the potential volatiles for the discrimination of different fermented sweet melon juice.In total,70 volatile compounds were found in the fermented sweet melon juices.Of them,45 compounds were annotated according to the GC-IMS database and classified into esters,alcohols,aldehydes,ketones and furans.Results from the multivariate analysis reveal that sweet melon juice fermented by different combinations of microbial strains could be distinctly separated from each other.A total of 15 volatiles with both variable importance in projection value>1 and P<0.05 were determined as potential markers for the discrimination of fermented sweet melon juice.This study confirms the effect of microorganisms on the flavor of the fermented sweet melon juice and shows the potential of HS-GC-IMS combined with chemometrics as a powerful strategy to obtain volatile fingerprints of different fermented sweet melon juice.
基金support for this work from the National Natural Science Foundation of China(31960294,32160349)Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2017Z005,2020Z005)+1 种基金the Project for Cultivating New Century Academic and Technology Leaders of Nanning City(2020010)the High-Performance Computing Platform of Guangxi University.
文摘The vapor–liquid equilibrium(VLE)data of a-pinene+camphene+[abietic acid+palustric acid+neoabietic acid]and a-pinene+longifolene+[abietic acid+palustric acid+neoabietic acid]systems at 313.15 K,333.15 K and 358.15 K were measured by headspace gas chromatography(HSGC).These data was compared with the predictions value by conductor-like screening model for realistic solvation(COSMO-RS).Moreover,the calculated data of COSMO-RS and Non-Random Two-Liquids(NRTL)models showed good agreement with the experimental data.It was found that the three resin acids inhibited the volatility of a-pinene,camphene and longifolene and resulted in the decrease of total pressure.Moreover,HE(HB)contributes the most to the excess enthalpy and the hydrogen bonding interaction is the dominant intermolecular force of a-pinene,camphene and longifolene with the three resin acids.In addition,the geometric structures optimization and binding energy were obtained by the DFT to further illustrate the hydrogen bonding interaction and the effects of the addition of the three resin acids on the isothermal VLE.
基金supported by the Agricultural Science and Technology Innovation Program, China (ASTIP)the Building of Modern Agricultural Industry (Bees) R&D Systems in China (NYCYTI-43-KXJ17)
文摘The aim of this work was to distinguish volatile organic compound(VOC) profiles of royal jelly(RJ) from different nectar plants. Headspace solid-phase microextraction(HS-SPME) was used to extract VOCs from raw RJ harvested from 10 nectar plants in flowering seasons. Qualitative and semi-quantitative analysis of VOCs extracts were performed by gas chromatography-mass spectrometry(GC-MS). Results showed that VOC profiles of RJ from the samples were rich in acid, ester and aldehyde compound classes, however, contents of them were differential, exemplified by the data from acetic acid, benzoic acid methyl ester, hexanoic acid and octanoic acid. As a conclusion, these four VOCs can be used for distinguishing RJ harvested in the seasons of different nectar plants.
基金supported by National Basic Research Program of China(973 Program,No.2015CB554506)~~
文摘Objective: To compare the volatile constituents in mugwort leaves produced in Qichun, Hubei Province and Nanyang, Henan Province. Methods: The volatile constituents were extracted using headspace heating and analyzed using gas chromatography-mass spectrometry (GC-MS). Then a qualitative analysis was made according to the standard database provided by the National Institute of Standards and Technology (NIST) and the relative contents of each constituent were calculated using the peak area normalization method. Results: A total of 59 compounds were identified from the mugwort leaves from Qichun and 51 compounds were identified from the mugwort leaves from Nanyang. These mainly include monoterpenoids, sesquiterpenoids, C^HvOz and other compounds involving the aldehyde, ketone, alkane and benzene. The mugwort leaves from Qichun and Nanyang share 32 common volatile constituents. The chromatographic peak area of identified compounds accounting for 96.38% of GC-MS total chromatographic peak areain Qichun mugwort leaves, versus 95.54% of that in Nanyang mugwort leaves. Conclusion: The headspace heating extraction combined with GC-MS technology can evidently display similarities and differences of volatile constituents in mugwort leaves produced in different areas and thus provide scientific basis for the quality and screening of mugwort leaves.
文摘[Objective] This research aimed to study the pre-treatment conditions of head space so as to establish a HS-GC determination method, which is suitable for China's conditions, for trace volatile organic compounds in drinking water. [Method]The preparation method of head space was adopted for the volatile organic compounds in drinking water. [Result] The 20 kinds of volatile organic compounds in drinking water all could be detected simultaneously by using HS-GC-FID method,and they all could be separated well. The HS-GC-FID method could analyze the detected substances qualitatively and quantitatively. In addition, this detection method was characterized by larger linear range of concentration, higher precision, higher detection limit and higher recovery rate. [Conclusion] Under certain conditions, HSGC can reduce the loss of volatile organic compound in drinking water and improve the sensitivity of detection. Moreover, the detection results meet the requirements by quality control.
文摘The volatile flavor compounds of Jin Xiang garlic and Tai’an garlic in chemical composition were detected and analyzed and the contents of them were compared and determinated. The volatile constituents of Jin Xiang garlic and Tai’an garlic were compared and analyzed by automatic static headspace and gas chromatography-mass spectrometry. Qualitative analysis of samples was made through the analysis of gas chromatography-mass spectrometry and NIST mass spectral library computer retrieval, and quantitative analysis was made by using area normalization method. The analysis results show that the slight difference of the volatile flavor compounds was detected in different places of origin garlic and Jin Xiang garlic was detected more total sulfur-containing compounds than Tai’an garlic. Meanwhile, the contents of sulfur compounds of the fresh garlic were more than the stored garlic and there were significant differences between them. The tests results indicated that flavor substances’ types were slightly different between Jin Xiang garlic and Tai’an garlic, and regional differences cannot affect the garlic flavor substances type. Jin Xiang garlic has more obvious flavor substances than Tai’an garlic which play a decisive role in the garlic flavor, such as 1,3-dithiane, and allyl trisulfide and allyl disulfide and diallyl tetrasulphide. The result of this research indicates that Automatic static headspace and gas chromatography-mass spectrometry is a fast, easy, efficient and accurate method to analyze and identify the volatile flavor components of garlic.
文摘In this study, the comparison of Elsholtzia ciliata volatile compounds from the stem (with leaf) and flower was acquired. The volatile compounds of these two parts from Elsholtzia ciliata aerial parts were respectively analyzed by a rapid and convenient static headspace injection technique coupled with gas chromatography-mass spectrometry and the relative contents of each constituent between the two different parts were determined by peak area normalization. 61 compounds were identified in the stem (with leaf) and flower, among which 39 components simultaneously exist. 47 and 53 compounds were separated and identified in the volatile compounds from the different parts of Elsholtzia ciliata, respectively. There were differences among some volatile constituents of the two parts, but the main constituents were all Elsholtzia ketone, caryophyllene, 3-octanol and Dehydroelsholtzia ketone. The most abundant components in the stem (with leaf) included Elsholtzia ketone (84.20%), caryophyllene (4.3%) and 3-octanol (3.11%), while Elsholtzia ketone (88.03%), caryophyllene (3.33%) and 3-octanol (1.53%) were the main components in the flower. 8 single constituents were identified in the stem (with leaf) volatiles including 3-heptanone and linalool, while 14 constituents only including 2-methylbutanoic acid and Perillene have been found in the flower volatiles. Elsholtzia ketone was the main compound, and its concentration was significantly higher than other substances (>80% of the total oils in Elsholtzia ciliata). The study provided an important scientific base for the further utilization of Elsholtzia ciliata resources and may be helpful for systematically understanding the constituents of volatile compounds of Elsholtzia ciliata.
基金Supported by Hainan Science and Technology Project(No.ZDYF2020229)Scientific Research Project of Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province(No.HNZDSYS(YY)-03)。
文摘[Objectives]This study was conducted to explore the effects of grafting on volatile compounds in bitter gourd fruit.[Methods]The volatile compounds and relative contents of grafted and non-grafted fruit were analyzed by headspace solid phase micro-extraction with gas chromatography-mass spectrometry.[Results]There were 59 volatile compounds in Haiyan No.2S,including six unique compounds.There were 58 volatile compounds in Haiyan No.2J,including five unique compounds.[Conclusions]This study provides a scientific basis for further analysis of bitter gourd flavor regulation mediated by grafting.