The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearabl...The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems.展开更多
In order to allow the guardians to monitor the physiological parameters of the infant more intuitively and to be able to respond to sudden irregularities in the pulse rate,abnormal blood oxygen,high or low body temper...In order to allow the guardians to monitor the physiological parameters of the infant more intuitively and to be able to respond to sudden irregularities in the pulse rate,abnormal blood oxygen,high or low body temperature and other conditions,and to facilitate communication with the medical staff or to request assistance in treatment,an STM32 microcontroller-based infant health monitoring system is designed.The digital signal acquisition module for pulse,blood oxygen and body temperature acquire the raw data,and the microcontroller performs algorithmic processing to display the physiological parameters such as pulse,blood oxygen and body temperature of the infant,and configures the threshold alarms for the physiological parameters by means of a keypad module.Finally,the test results are compared and tested against the standard physiological parameters of infants and children to verify that the system meets the requirements of medical precision and accuracy.展开更多
An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The method...An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.展开更多
Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam...Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam”model of the Taizhou Yangtze River Bridge.The calculated low-order vibration mode frequency of the FEM is in good agreement with the completion test results.The model can simulate the overall dynamic response of the bridge.Based on the vehicle load survey,the Monte Carlo method is applied to simulate the traffic load flow.Then the overall dynamic response analysis of FEM is car-ried out.Taking the bending moment of the main beam as the control index,the fatigue sensitive section in the steel box girder of FEM is analyzed.Based on the strain time history data of steel box girder recorded by the structural health mon-itoring system(SHM),the true stress response of steel box girder under vehicle load is extracted.Taking the cumulative fatigue damage increment as the evalua-tion index,the fati gue performance evaluation of the steel box girders is con-ducted based on the collected health monitoring data.The fatigue effect of the beam section near the steel tower,especially the first section of the middle tower,is the key section of the fatigue analysis by health morning system,which is con-sistent with the calculation results of FEM.展开更多
In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable develop...In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable development index. Based on the feature of qualitative and quantitative indices combining, the PCA-PR (principal component analysis and pattern recognition) model is constructed. The model first analyzes the principal components of the life-cycle indices system constructed above, and picks up those principal component indices that can reflect the health status of a project at any time. Then the pattern recognition model is used to study these principal components, which means that the real time health status of the project can be divided into five lamps from a green lamp to a red one and the health status lamp of the project can be recognized by using the PR model and those principal components. Finally, the process is shown with a real example and a conclusion consistent with the actual situation is drawn. So the validity of the index system and the PCA-PR model can be confirmed.展开更多
Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider...Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider the variable factors affecting each patient,resulting in discrepancies between the measured values and real health status.To solve the problems,we propose a new health monitoring system with physiological parameter measurement,correction,and feedback.The study collects clinical samples of the elderly to formulate regression equations and statistical models for analyzing the relationship between gender,age,measurement time,and physical signs.After multiple adjustments to measurements of physical signs,the correction algorithm compares the data with a standard value.The process significantly reduces the risk of misjudgment while matching users’health status more accurately.The application case of this paper proves the validity of the method for measuring and correcting heart rate results in the elderly and presents a specific correction procedure.Additionally,the correction algorithm provides a scientific basis for eliminating or modifying other influencing factors in future health monitoring studies.展开更多
The coronavirus disease 2019(COVID-19)has currently caused the mortality of millions of people around the world.Aside from the direct mortality from the COVID-19,the indirect effects of the pandemic have also led to a...The coronavirus disease 2019(COVID-19)has currently caused the mortality of millions of people around the world.Aside from the direct mortality from the COVID-19,the indirect effects of the pandemic have also led to an increase in the mortality rate of other non-COVID patients.Evidence indicates that novel COVID-19 pandemic has caused an inflation in acute cardiovascular mortality,which did not relate to COVID-19 infection.It has in fact increased the risk of death in cardiovascular disease(CVD)patients.For this purpose,it is dramatically inevitable to monitor CVD patients’vital signs and to detect abnormal events before the occurrence of any critical conditions resulted in death.Internet of things(IoT)and health monitoring sensors have improved the medical care systems by enabling latency-sensitive surveillance and computing of large amounts of patients’data.The major challenge being faced currently in this problem is its limited scalability and late detection of cardiovascular events in IoT-based computing environments.To this end,this paper proposes a novel framework to early detection of cardiovascular events based on a deep learning architecture in IoT environments.Experimental results showed that the proposed method was able to detect cardiovascular events with better performance(95.30%average sensitivity and 95.94%mean prediction values).展开更多
Internet of things(IoT)field has emerged due to the rapid growth of artificial intelligence and communication technologies.The use of IoT technology in modern healthcare environments is convenient for doctors and pati...Internet of things(IoT)field has emerged due to the rapid growth of artificial intelligence and communication technologies.The use of IoT technology in modern healthcare environments is convenient for doctors and patients as it can be used in real-time monitoring of patients,proper administration of patient information,and healthcare management.However,the usage of IoT in the healthcare domain will become a nightmare if patient information is not securely maintainedwhile transferring over an insecure network or storing at the administrator end.In this manuscript,the authors have developed a secure IoT healthcare monitoring system using the Blockchainbased XOR Elliptic Curve Cryptography(BC-XORECC)technique to avoid various vulnerable attacks.Initially,thework has established an authentication process for patient details by generating tokens,keys,and tags using Length Ceaser Cipher-based PearsonHashingAlgorithm(LCC-PHA),EllipticCurve Cryptography(ECC),and Fishers Yates Shuffled Based Adelson-Velskii and Landis(FYS-AVL)tree.The authentications prevent unauthorized users from accessing or misuse the data.After that,a secure data transfer is performed using BC-XORECC,which acts faster by maintaining high data privacy and blocking the path for the attackers.Finally,the Linear Spline Kernel-Based Recurrent Neural Network(LSK-RNN)classification monitors the patient’s health status.The whole developed framework brings out a secure data transfer without data loss or data breaches and remains efficient for health care monitoring via IoT.Experimental analysis shows that the proposed framework achieves a faster encryption and decryption time,classifies the patient’s health status with an accuracy of 89%,and remains robust comparedwith the existing state-of-the-art method.展开更多
In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of ...In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.展开更多
In this paper new technique is developed to monitor the health status of the PV panels in the array. For finding the health status short circuit current is measured continuously over a fixed time period. This techniqu...In this paper new technique is developed to monitor the health status of the PV panels in the array. For finding the health status short circuit current is measured continuously over a fixed time period. This technique can classify the health status into four categories such as Healthy, Low Fault, Medium Fault and High Fault. By this classification faulty operation can be rectified and power generation may be improved. In case of high faults, PV panels can be protected. The cost requirement for the implementation is very low. The proposed technique is implemented in MATLAB Simulation and hardware. The array considered in this paper is 2 × 2 Series Parallel.展开更多
Scorpions,through ruthless survival of the fittest,evolve the unique ability to quickly locate and hunt prey with slit receptors near the leg joints and a sharp sting on the multi-freedom tail.Inspired by this fantast...Scorpions,through ruthless survival of the fittest,evolve the unique ability to quickly locate and hunt prey with slit receptors near the leg joints and a sharp sting on the multi-freedom tail.Inspired by this fantastic creature,we herein report a dual-bionic strategy to fabricate microcrack-assisted wrinkle strain sensor with both high sensitivity and stretchability.Specifically,laserinduced graphene(LIG)is transferred from polyimide film to Ecoflex and then coated with silver paste using the casting-andpeeling and prestretch-and-release methods.The shape-adaptive and long-range ordered geometry(e.g.,amplitude and wavelength)of dual-bionic structure is prestrain-tuned to optimize the superfast response time(~76 ms),high sensitivity(gauge factor=223.6),broad working range(70%–100%),and good reliability(>800 cycles)of scorpion-inspired strain sensor,outperforming many LIG-based materials and other bionic sensors.The alternate reconnect/disconnect behaviors of slit-organlike microcracks in the mechanical weak areas initiate tremendous resistance changes,whereas the scorpion-tail-like wrinkles act as a“bridge”connecting the adjacent LIG resistor units,enabling reversible resilience and unimpeded electrical linkages over a wide strain range.Combined with the self-developed miniaturized,flexible,and all-in-one wireless transmission system,a variety of scenarios such as large body movements,tiny pulse,and heartbeat are real-time monitored via bluetooth and displayed in the client-sides,revealing a huge promise in future wearable electronics.展开更多
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient...Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.展开更多
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,...Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.展开更多
Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T...Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.展开更多
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh...Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a g...The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a goal of extreme and current interest.In the present work,the results obtained from the processing of experimental data of a real structure are shown.The analyzed structure is a lattice structure approximately 9 m high,monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels.The data used refer to continuous monitoring that lasted for a total of 1 year,during which minor damage was caused to the structure by alternatively removing some bracings and repositioning them in the structure.Two methodologies detecting damage based on decomposition techniques of the acquired data were used and tested,as well as a methodology combining the two techniques.The results obtained are extremely interesting,as all the minor damage caused to the structure was identified by the processing methods used,based solely on the monitored data and without any knowledge of the real structure being analyzed.The results use 15 acquisitions in environmental conditions lasting 10 min each,a reasonable amount of time to get immediate feedback on possible damage to the structure.展开更多
The number of urban underground road tunnels in China is increasing year by year,and health monitoring of tunnels is an effective management method to ensure their structural integrity.However,for shorter underground ...The number of urban underground road tunnels in China is increasing year by year,and health monitoring of tunnels is an effective management method to ensure their structural integrity.However,for shorter underground road tunnel projects,insufficient investment often leads to less frequent application of health monitoring systems.The application of intelligent structural health monitoring means can not only reduce the project cost but also help workers fully understand the actual situation of the tunnel structure.Therefore,this paper analyzes the characteristics,problems,and design of the urban underground road tunnel structural health monitoring system,and discusses the implementation of the urban underground road tunnel structural health monitoring system.展开更多
As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its a...As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.展开更多
Clutch is one of the most significant components in automobiles.To improve passenger safety,reliability and economy of automobiles,advanced supervision and fault diagnostics are required.Condition Monitoring is one of...Clutch is one of the most significant components in automobiles.To improve passenger safety,reliability and economy of automobiles,advanced supervision and fault diagnostics are required.Condition Monitoring is one of the key divisions that can be used to track the reliability of clutch and allied components.The state of the clutch elements can be monitored with the help of vibration signals which contain valuable information required for classification.Specific drawbacks of traditional fault diagnosis techniques like high reliability on human intelligence and the requirement of profes-sional expertise,have made researchers look for intelligent fault diagnosis techniques.In this article,the classification performance of the deep learning technique(employing images plotted from vibration signals)is compared with the machine learning technique(using features extracted from vibration signals)to identify the most viable solution for condition monitoring of the clutch system.The overall experimentation is carried out in two phases,namely the deep learning phase and the machine learning phase.Overall,the effectiveness of the pre-trained networks was assessed and compared with machine learning algorithms.Based on the comparative study,the best-performing technique is recommended for real-time application.展开更多
文摘The integration of wearable technologies and artificial intelligence (AI) has revolutionized healthcare, enabling advanced personal health monitoring systems. This article explores the transformative impact of wearable technologies and AI on healthcare, highlighting the development and theoretical application of the Integrated Personal Health Monitoring System (IPHMS). By integrating data from various wearable devices, such as smartphones, Apple Watches, and Oura Rings, the IPHMS framework aims to revolutionize personal health monitoring through real-time alerts, comprehensive tracking, and personalized insights. Despite its potential, the practical implementation faces challenges, including data privacy, system interoperability, and scalability. The evolution of healthcare technology from traditional methods to AI-enhanced wearables underscores a significant advancement towards personalized care, necessitating further research and innovation to address existing limitations and fully realize the benefits of such integrated health monitoring systems.
文摘In order to allow the guardians to monitor the physiological parameters of the infant more intuitively and to be able to respond to sudden irregularities in the pulse rate,abnormal blood oxygen,high or low body temperature and other conditions,and to facilitate communication with the medical staff or to request assistance in treatment,an STM32 microcontroller-based infant health monitoring system is designed.The digital signal acquisition module for pulse,blood oxygen and body temperature acquire the raw data,and the microcontroller performs algorithmic processing to display the physiological parameters such as pulse,blood oxygen and body temperature of the infant,and configures the threshold alarms for the physiological parameters by means of a keypad module.Finally,the test results are compared and tested against the standard physiological parameters of infants and children to verify that the system meets the requirements of medical precision and accuracy.
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA04Z416)
文摘An output-only modal identification method by a combination use of the peak-picking method and the cross spectrum methods are presented. Meanwhile, a novel mode shape optimum method of the deck is proposed. The methods are applied to the operational modal identification system of the Runyang Suspension Bridge, which can be used to obtain the modal parameters of the bridge from out-only data sets collected by its structural health monitoring system (SHMS). As an example, the vibration response data of the deck, cable and tower recorded during typhoon Matsa excitation are used to illustrate the program application. Some of the modal frequencies observed from deck vibration responses are also found in the vibration responses of the cable and the tower. The results show that some modal shapes of the deck are strongly coupled with the cable and the tower. By comparing the identification results from the operational modal system with those from field measurements, a good agreement between them is achieved, but some modal frequencies identified from the operational modal identification system (OMIS), such as L1 and L2, obviously decrease compared with those from the field measurements.
基金This research has been supported by the National Natural Science Foundation of China(Grant No.51778135)the National Key R&D Program Foundation of China(Grant No.201 TYFC0806001)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160207)Aeronautical Science Foundation of China(Grant No.20130969010)the Fundamental Research Funds for the Central Universities and Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX18__0113 and KYLX16_0253).
文摘Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam”model of the Taizhou Yangtze River Bridge.The calculated low-order vibration mode frequency of the FEM is in good agreement with the completion test results.The model can simulate the overall dynamic response of the bridge.Based on the vehicle load survey,the Monte Carlo method is applied to simulate the traffic load flow.Then the overall dynamic response analysis of FEM is car-ried out.Taking the bending moment of the main beam as the control index,the fatigue sensitive section in the steel box girder of FEM is analyzed.Based on the strain time history data of steel box girder recorded by the structural health mon-itoring system(SHM),the true stress response of steel box girder under vehicle load is extracted.Taking the cumulative fatigue damage increment as the evalua-tion index,the fati gue performance evaluation of the steel box girders is con-ducted based on the collected health monitoring data.The fatigue effect of the beam section near the steel tower,especially the first section of the middle tower,is the key section of the fatigue analysis by health morning system,which is con-sistent with the calculation results of FEM.
基金The Social Science Fund of Hebei Province (No.200607011)the Key Science and Technology Project of Hebei Province(No.07213529)
文摘In order to more effectively assess the health status of a project, the monitoring indices in a project's life cycle are divided into quality index, cost index, time index, satisfaction index, and sustainable development index. Based on the feature of qualitative and quantitative indices combining, the PCA-PR (principal component analysis and pattern recognition) model is constructed. The model first analyzes the principal components of the life-cycle indices system constructed above, and picks up those principal component indices that can reflect the health status of a project at any time. Then the pattern recognition model is used to study these principal components, which means that the real time health status of the project can be divided into five lamps from a green lamp to a red one and the health status lamp of the project can be recognized by using the PR model and those principal components. Finally, the process is shown with a real example and a conclusion consistent with the actual situation is drawn. So the validity of the index system and the PCA-PR model can be confirmed.
基金This work was supported by the National Natural Science Foundation of China(No.51804014).
文摘Current health monitoring systems often do not concern about the needs of the elderly,leading to inaccurate health status monitoring and delayed treatment for emergency health conditions.Similarly,they do not consider the variable factors affecting each patient,resulting in discrepancies between the measured values and real health status.To solve the problems,we propose a new health monitoring system with physiological parameter measurement,correction,and feedback.The study collects clinical samples of the elderly to formulate regression equations and statistical models for analyzing the relationship between gender,age,measurement time,and physical signs.After multiple adjustments to measurements of physical signs,the correction algorithm compares the data with a standard value.The process significantly reduces the risk of misjudgment while matching users’health status more accurately.The application case of this paper proves the validity of the method for measuring and correcting heart rate results in the elderly and presents a specific correction procedure.Additionally,the correction algorithm provides a scientific basis for eliminating or modifying other influencing factors in future health monitoring studies.
文摘The coronavirus disease 2019(COVID-19)has currently caused the mortality of millions of people around the world.Aside from the direct mortality from the COVID-19,the indirect effects of the pandemic have also led to an increase in the mortality rate of other non-COVID patients.Evidence indicates that novel COVID-19 pandemic has caused an inflation in acute cardiovascular mortality,which did not relate to COVID-19 infection.It has in fact increased the risk of death in cardiovascular disease(CVD)patients.For this purpose,it is dramatically inevitable to monitor CVD patients’vital signs and to detect abnormal events before the occurrence of any critical conditions resulted in death.Internet of things(IoT)and health monitoring sensors have improved the medical care systems by enabling latency-sensitive surveillance and computing of large amounts of patients’data.The major challenge being faced currently in this problem is its limited scalability and late detection of cardiovascular events in IoT-based computing environments.To this end,this paper proposes a novel framework to early detection of cardiovascular events based on a deep learning architecture in IoT environments.Experimental results showed that the proposed method was able to detect cardiovascular events with better performance(95.30%average sensitivity and 95.94%mean prediction values).
基金This project has been funded by the Scientific Research Deanship at the University of Ha’il-Saudi Arabia through project number BA-2105.
文摘Internet of things(IoT)field has emerged due to the rapid growth of artificial intelligence and communication technologies.The use of IoT technology in modern healthcare environments is convenient for doctors and patients as it can be used in real-time monitoring of patients,proper administration of patient information,and healthcare management.However,the usage of IoT in the healthcare domain will become a nightmare if patient information is not securely maintainedwhile transferring over an insecure network or storing at the administrator end.In this manuscript,the authors have developed a secure IoT healthcare monitoring system using the Blockchainbased XOR Elliptic Curve Cryptography(BC-XORECC)technique to avoid various vulnerable attacks.Initially,thework has established an authentication process for patient details by generating tokens,keys,and tags using Length Ceaser Cipher-based PearsonHashingAlgorithm(LCC-PHA),EllipticCurve Cryptography(ECC),and Fishers Yates Shuffled Based Adelson-Velskii and Landis(FYS-AVL)tree.The authentications prevent unauthorized users from accessing or misuse the data.After that,a secure data transfer is performed using BC-XORECC,which acts faster by maintaining high data privacy and blocking the path for the attackers.Finally,the Linear Spline Kernel-Based Recurrent Neural Network(LSK-RNN)classification monitors the patient’s health status.The whole developed framework brings out a secure data transfer without data loss or data breaches and remains efficient for health care monitoring via IoT.Experimental analysis shows that the proposed framework achieves a faster encryption and decryption time,classifies the patient’s health status with an accuracy of 89%,and remains robust comparedwith the existing state-of-the-art method.
文摘In this paper, we introduce a system architecture for a patient centered mobile health monitoring (PCMHM) system that deploys different sensors to determine patients’ activities, medical conditions, and the cause of an emergency event. This system combines and analyzes sensor data to produce the patients’ detailed health information in real-time. A central computational node with data analyzing capability is used for sensor data integration and analysis. In addition to medical sensors, surrounding environmental sensors are also utilized to enhance the interpretation of the data and to improve medical diagnosis. The PCMHM system has the ability to provide on-demand health information of patients via the Internet, track real-time daily activities and patients’ health condition. This system also includes the capability for assessing patients’ posture and fall detection.
文摘In this paper new technique is developed to monitor the health status of the PV panels in the array. For finding the health status short circuit current is measured continuously over a fixed time period. This technique can classify the health status into four categories such as Healthy, Low Fault, Medium Fault and High Fault. By this classification faulty operation can be rectified and power generation may be improved. In case of high faults, PV panels can be protected. The cost requirement for the implementation is very low. The proposed technique is implemented in MATLAB Simulation and hardware. The array considered in this paper is 2 × 2 Series Parallel.
基金The current study was supported by the Natural Science Foundation of Guangdong Province,China(No.2021B1515020087)the National Natural Science Foundation of China(No.51905178).
文摘Scorpions,through ruthless survival of the fittest,evolve the unique ability to quickly locate and hunt prey with slit receptors near the leg joints and a sharp sting on the multi-freedom tail.Inspired by this fantastic creature,we herein report a dual-bionic strategy to fabricate microcrack-assisted wrinkle strain sensor with both high sensitivity and stretchability.Specifically,laserinduced graphene(LIG)is transferred from polyimide film to Ecoflex and then coated with silver paste using the casting-andpeeling and prestretch-and-release methods.The shape-adaptive and long-range ordered geometry(e.g.,amplitude and wavelength)of dual-bionic structure is prestrain-tuned to optimize the superfast response time(~76 ms),high sensitivity(gauge factor=223.6),broad working range(70%–100%),and good reliability(>800 cycles)of scorpion-inspired strain sensor,outperforming many LIG-based materials and other bionic sensors.The alternate reconnect/disconnect behaviors of slit-organlike microcracks in the mechanical weak areas initiate tremendous resistance changes,whereas the scorpion-tail-like wrinkles act as a“bridge”connecting the adjacent LIG resistor units,enabling reversible resilience and unimpeded electrical linkages over a wide strain range.Combined with the self-developed miniaturized,flexible,and all-in-one wireless transmission system,a variety of scenarios such as large body movements,tiny pulse,and heartbeat are real-time monitored via bluetooth and displayed in the client-sides,revealing a huge promise in future wearable electronics.
基金supported by the Research and Development Center of Transport Industry of New Generation of Artificial Intelligence Technology(Grant No.202202H)the National Key R&D Program of China(Grant No.2019YFB1600702)the National Natural Science Foundation of China(Grant Nos.51978600&51808336).
文摘Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.
基金financially supported by the National Natural Science Foundation of China(52373079,52161135302,52233006)the China Postdoctoral Science Foundation(2022M711355)the Natural Science Foundation of Jiangsu Province(BK20221540).
文摘Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
基金financially supported by the National Natural Science Foundation of China(Nos.52011530037 and 51904019)。
文摘Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.
基金National Science Foundation of Zhejiang under Contract(LY23E010001)。
文摘Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
基金The author N.I.Giannoccaro received funds from the Department of Innovation Engineering,University of Salento,for acquiring the tool Structural Health Monitoring.
文摘The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a goal of extreme and current interest.In the present work,the results obtained from the processing of experimental data of a real structure are shown.The analyzed structure is a lattice structure approximately 9 m high,monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels.The data used refer to continuous monitoring that lasted for a total of 1 year,during which minor damage was caused to the structure by alternatively removing some bracings and repositioning them in the structure.Two methodologies detecting damage based on decomposition techniques of the acquired data were used and tested,as well as a methodology combining the two techniques.The results obtained are extremely interesting,as all the minor damage caused to the structure was identified by the processing methods used,based solely on the monitored data and without any knowledge of the real structure being analyzed.The results use 15 acquisitions in environmental conditions lasting 10 min each,a reasonable amount of time to get immediate feedback on possible damage to the structure.
文摘The number of urban underground road tunnels in China is increasing year by year,and health monitoring of tunnels is an effective management method to ensure their structural integrity.However,for shorter underground road tunnel projects,insufficient investment often leads to less frequent application of health monitoring systems.The application of intelligent structural health monitoring means can not only reduce the project cost but also help workers fully understand the actual situation of the tunnel structure.Therefore,this paper analyzes the characteristics,problems,and design of the urban underground road tunnel structural health monitoring system,and discusses the implementation of the urban underground road tunnel structural health monitoring system.
文摘As a crucial infrastructure in the transport system,the safe operation of bridges is directly related to all aspects of people’s daily lives.The development of bridge structural health monitoring technology and its application play an important role in ensuring the safety and extending the service life of bridges.This paper carries out in-depth research and analysis on the related technology of bridge structural health monitoring.Firstly,the existing monitoring technologies at home and abroad are sorted out,and the advantages and problems of various methods are compared and analyzed,including nondestructive testing,stress measurement,vibration characteristic identification,and other commonly used monitoring technologies.Secondly,the key technologies and equipment in the bridge health monitoring system,such as sensor technology,data acquisition,and processing technology,are introduced in detail.Finally,the development trend in the field of bridge health monitoring is prospected from both theoretical research and technical application.In the future,with the development of emerging technologies such as big data,cloud computing,and the Internet of Things,it is expected that bridge health monitoring with intelligent and systematic features will be more widely applied to provide a stronger guarantee for the safe and efficient operation of bridges.
文摘Clutch is one of the most significant components in automobiles.To improve passenger safety,reliability and economy of automobiles,advanced supervision and fault diagnostics are required.Condition Monitoring is one of the key divisions that can be used to track the reliability of clutch and allied components.The state of the clutch elements can be monitored with the help of vibration signals which contain valuable information required for classification.Specific drawbacks of traditional fault diagnosis techniques like high reliability on human intelligence and the requirement of profes-sional expertise,have made researchers look for intelligent fault diagnosis techniques.In this article,the classification performance of the deep learning technique(employing images plotted from vibration signals)is compared with the machine learning technique(using features extracted from vibration signals)to identify the most viable solution for condition monitoring of the clutch system.The overall experimentation is carried out in two phases,namely the deep learning phase and the machine learning phase.Overall,the effectiveness of the pre-trained networks was assessed and compared with machine learning algorithms.Based on the comparative study,the best-performing technique is recommended for real-time application.