A 2D full cell thermo-electric model of 160kA drained cell was set up using finiteelement code to calculate its freeze profile, then the drained cell model was modifiedaccording to the freeze profile computed and its ...A 2D full cell thermo-electric model of 160kA drained cell was set up using finiteelement code to calculate its freeze profile, then the drained cell model was modifiedaccording to the freeze profile computed and its heat balance was calculated. Comparedwith that of a 160kA conventional Hall-Heroult cell (H-H cell), though the melts vol-ume of the drained cell reduced greatly, the whole heat loss from it didn't drop downapparently, and an analysis was presented in the paper. On the other hand, the anode-cathode distance (ACD) of a drained cell was much less than that of a H-H cell, sothe voltage drop on it and heat produced decreased too, steps should be taken to keepa workable heat balance on a drained cell.展开更多
A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on mi...A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on microstructure,experiments were designed to successfully coat AA7075 on AZ31B with two different heat balance conditions to yield a coated sample with tensile residual stress and a sample with compressive residual stress in both coating and substrate.The effects of coating temperature on the microstructure of magnesium alloy and the interfaces of coated samples were then analyzed by SEM,EBSD,TEM in high-and low-heat input coating conditions.The interface of the AA7075 coating and magnesium alloy substrate under both conditions consists of a narrow-band layer with very fine grains,followed by columnar grains of magnesium that have grown perpendicular to the interface.At higher temperatures,this layer became wider.No intermetallic phase was detected at the interface under either condition.It is shown that the microstructure of the substrate was affected by coating temperature,leading to stress relief,dynamic recrystallization and even dynamic grain growth of magnesium under high temperature.Reducing the heat input and increasing the heat transfer decreased microstructural changes in the substrate.展开更多
Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is fo...Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is found that parallel operation pattern is better for solar-soil compound system. Furthermore, the heat balance issue of solar-soil compound system was emphatically analyzed from four aspects, which were annual analysis of heating and cooling load, the heat exchange of ground heat exchanger, capacity determination of solar-assisted heat sottrce and heat balance calculation of solar-soil compound system. Moreover, annual rate of heat balance in a solar-soil source heat pump compound system was calculated with a case study. It is shown that the annual heat unbalance ratio is 19%, which is less than 20%. As a result, the practical solar-soil compound system can basically maintain the heat balance of soil.展开更多
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve...Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.展开更多
The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the westerly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using data collected fr...The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the westerly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using data collected from eight buoys of TOGA (Tropical Ocean-Global Atmosphere)- COARE (Coupled Ocean-Atmosphere Response Experiment), the heat balances of the upper ocean in the western equatorial Pacific around 0 degrees, 156 degreesE during two WWB events were calculated according to Stevenson and Niiler's (1983) method. In both events, SST increased before and after the WWBs, while decreased within the WWBs. The SST amplitudes approximated to 1 degreesC. Although sometimes the horizontal heat advections may become the biggest term in the heat balance, the variation of SST was dominated by the surface heat flux. On the other aspect, some different features of the two events are also revealed. The two cases have different variation of mixed layer depth. The depth of mixed layer is almost double in the first case (35 in to 70 m), which is caused by Ekman convergence, while only 10m increments due to entrainment in the second one, There are also differences in the currents structure. The different variations of thermal and currents structure in the mixing layers accounted for the different variation of the heat balance during the two events, especially the advection and residue terms. The seasonal variation of SST in this area is also investigated simply. The first WWB event happened just during the seasonal transition. So we considered that it is a normal season transition rather than a so-called anomaly. That also suggested that the seasonal distinction of the WWB is worthy of more attention in the researches of its relationship to ENSO.展开更多
Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the ne...Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the net heat gain of the sea surface are calculated over the Indian and the Pacific Oceans for the domain of 35°N-35°S and 45°E-75°W. The results indicate that the upward transfer of the latent and the sensible heat fluxes over the winter hemisphere is larger than that over the summer hemisphere. The sensible heat over the tropical mid Pacific in the Southern Hemisphere is transported from the atmosphere to the ocean, though its magnitude is rather small. The latent heat flux gained by the air over the eastern Pacific is less than the mean value of the normal year. The net radiation, on which the cloud amount has considerable impact, is essentially zonally distributed. Moreover, the sea surface temperature (SST) has a very good correlation with the net radiation, the region of warm SST coinciding with that of the low net radiation. The net radiation obtained by the mid Pacific Ocean is reduced by the SST anomaly during the El Nino event, whereas the atmosphere over there get more latent heat flux, and this results in the diminution of the net heat gain of the ocean. The overview of the heat budget is that the ocean over the winter hemisphere is the energy source of the atmosphere, and that over the summer hemisphere its energy sink.展开更多
In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conv...In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conversion from mechanical energy to electrical energy. Analysis of these test data serves as a measure to indicate deviation from normal operation profile and deterioration of plant performance. This present work implemented the heat balance tests process to three turb- generator units in order to assess the harmony, consistency, and accuracy of results to establish parallel correlation for the test process. The test process involves carrying out a heat balance for the turbo-generators at 50%, 75% and 100% load respectively through the determination of the heat losses through the hydrogen coolers, bearing oil, seal oil and radiation and convention to the atmosphere. Some important results were presented in the paper.展开更多
The possibility of underground imbalance between heat emission and absorption has a negative impact on the performance of ground-source heat pump systems (GSHPs). Numerical and experimental researches were made in a...The possibility of underground imbalance between heat emission and absorption has a negative impact on the performance of ground-source heat pump systems (GSHPs). Numerical and experimental researches were made in a residential building, which is supplied with a GSHP system and a ceiling radiation system combined with a replacement fresh air system. EnergyPlus simulations were used to estimate heating and cooling loads, and to assess the heat generated from the water pump, the fan and the heat pump unit. Then, Fluent simulations were used to compare three different control strategies of handling the underground heat exchange. These simulations were strongly based on an experimentally verified model. It is obtained that a ratio between cooling and heating loads is 5.08 : 1 in a case study in Nanjing. Moreover, the control strategy based on the starting time is more efficient and reliable than the temperature and temperature difference strategies to control the underground heat exchange.展开更多
Energy balances are a general fundamental approach for analyzing the heat requirements for metallurgical processes.The formulation of heat balance equations was involved by computing the various components of heat goi...Energy balances are a general fundamental approach for analyzing the heat requirements for metallurgical processes.The formulation of heat balance equations was involved by computing the various components of heat going in and coming out of the oxygen steelmaking furnace.The developed model was validated against the calculations of Healy and McBride.The overall heat losses that have not been analyzed in previous studies were quantified by back-calculating heat loss from 35 industrial data provided by Tata Steel.The results from the model infer that the heat losses range from 1.3%to 5.9%of the total heat input and it can be controlled by optimizing the silicon in hot metal,the amount of scrap added and the postcombustion ratio.The model prediction shows that sensible heat available from the hot metal accounts for around 66%of total heat input and the rest from the exothermic oxidation reactions.Out of 34%of the heat from exothermic reactions,between 20%and 25%of heat is evolved from the oxidation of carbon to carbon monoxide and carbon dioxide.This model can be applied to predict the heat balance of any top blown oxygen steelmaking technology but needs further validation for a range of oxygen steelmaking operations and conditions.展开更多
The grazing exclusion program used by the Tibetan government to protect the ecological environment has changed the vegetation and impacted the surface heat balance in North Tibet. However, little information is availa...The grazing exclusion program used by the Tibetan government to protect the ecological environment has changed the vegetation and impacted the surface heat balance in North Tibet. However, little information is available to describe the in?uences of the current grazing exclusion program on local surface heat balance. This study uses the records of fenced grassland patch locations to identify the impact of grazing exclusion on surface heat balance in North Tibet. The records of fenced grassland patch locations, including the longitude, latitude, and elevation of the vertices of each fenced patch(polygon shapes), were provided by the agriculture and animal husbandry bureaus of the counties where the patches were located. ArcGIS 10.2 was used to create polygon shapes based on patch location records. Based on satellite data and the surface heat balance system determined by the model, values for changes in land surface temperature(LST), albedo and evapotranspiration(ET) induced by grazing exclusion were obtained. All of these can influence surface heat balance and alter the fluctuation of LST in the northern Tibetan Plateau. The LST trends for day and night showed an asymmetric diurnal variation, with a larger magnitude of warming in the day than cooling at night. The maximum decrease in absorbed shortwave of LST(?0.5 ? ?0.4 ℃ per decade) occurred in the central region, while the minimum decrease(?0.2 ? ?0.1 ℃ per decade) occurred in the eastern region. The decreased latent heat lead to the LST increased maximum(>1 ℃ per decade) occurred in the central region, The eastern region increased at a rate of 0.2?0.5 ℃ per decade, while the minimum increase(0?0.1 ℃ per decade) occurred in the northwestern region.展开更多
In order to improve parts accuracy, a method of adding heat balance support (HBS) was proposed, and the detailed algorithm for generating HBS was developed. A number of experiments and a comparison between similar s...In order to improve parts accuracy, a method of adding heat balance support (HBS) was proposed, and the detailed algorithm for generating HBS was developed. A number of experiments and a comparison between similar softwares, showed that the algorithm is efficient and feasible. Moreover, different features of riBS were studied for different kinds of materials, such as PS and nylon. The research findings indicate that automatically adding HBS can significantly improve the accuracy of the parts, and that the algorithm for generating HBS is efficient and precise.展开更多
Biomass can be converted intoflammable gas,charcoal,wood vinegar,wood tar oil and noncombustible materials with thermo-chemical pyrolysis reactions.Many factors influence these processes,such as the properties of the ra...Biomass can be converted intoflammable gas,charcoal,wood vinegar,wood tar oil and noncombustible materials with thermo-chemical pyrolysis reactions.Many factors influence these processes,such as the properties of the raw materials,and temperature control and these will affect the products that are produced.Based on the data from a straw pyrolysis demonstration project,the mass and heat balance of the biomass pyrolysis process were analyzed.The statistical product and service solutions(SPSS)statistical method was used to analyze the data which were monitored on-site.A cost-benefit analysis was then used to study the viability of commercializing the project.The analysis included net present value,internal rate of return and investment payback period.These results showed that the straw pyrolysis project has little risk,and will produce remarkable economic benefits.展开更多
This study concerns the heat transfer processes during ice accretion on wires. The steady state heat balance equation assumed to describe the thermodynamics at the surface of a current heated wire subjected to icing i...This study concerns the heat transfer processes during ice accretion on wires. The steady state heat balance equation assumed to describe the thermodynamics at the surface of a current heated wire subjected to icing is obtained by analyzing and computing each terms of heat flux. The surface temperature of wire is derived from the heat balance equation, which gives out a proposed estimation of the current intensity to prevent the wire icing展开更多
In this study, the e?ect of the lower boundary position selection for the Fourier equation on heat transfer and energy balance in soil is evaluated. A detailed numerical study shows that the proper position of the l...In this study, the e?ect of the lower boundary position selection for the Fourier equation on heat transfer and energy balance in soil is evaluated. A detailed numerical study shows that the proper position of the lower boundary is critical when solving the Fourier equation by using zero heat ?ux as the lower boundary condition. Since the position de?nes the capacity of soil as a heat sink or source, which absorbs and stores radiation energy from the sky in summer and then releases the energy to the atmosphere in winter, and regulates the deep soil temperature distribution, the depth of the position greatly in?uences the heat balance within the soil as well as the interaction between the soil and the atmosphere. Based on physical reasoning and the results of numerical simulation, the proper depth of the position should be equal to approximately 3 times of the annual heat wave damping depth. For most soils, the proper lower boundary depth for the Fourier equation should be around 8 m to 15 m, depending on soil texture.展开更多
Heat balance of urban ecosystem is a key point for the study of urban climate and micro-climate pattern and its change mechanism. Urban heat island effect is becoming increasingly serious,which is mainly caused by the...Heat balance of urban ecosystem is a key point for the study of urban climate and micro-climate pattern and its change mechanism. Urban heat island effect is becoming increasingly serious,which is mainly caused by the change of the earth's surface cover and the anthropogenic heat release. In this study,the simulation experiment for the anthropogenic heat release was designed according to the heat balance principle. A set of buildings of miniature city were used to constitute the residential area,U grooves were applied to simulate the single building,and the fluorescent lamps in the U groove were regarded as the heat sources of the anthropogenic heat release. The simulation experiment was launched with long-short wave sun photometer,sonic anemothermometer and heat flow gauge in the experiment site. Then the net solar radiation,sensible heat flux and heat flux into the ground were determined. The quantities of the anthropogenic heat release were calculated based on the heat balance principle,and were compared with the theoretical power consumption of the fluorescent lamps. The root mean square error( RMSE) of the simulation for the anthropogenic heat release reaches0. 078 W·m- 2,a comparatively high precision,which showes that the anthropogenic heat release can be accurately determined through the simulation experiments. This study provided a scientific method for the purpose of monitoring the anthropogenic heat release.展开更多
Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel...Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel 30110 of the #3-1 coal seam, which is about 30-40 rn below the heating goaf of the #2-2 seam at Longhua underground coal mine, Shanxi Province, China. Booster fans and ventilation control devices such as doors and regulators were used in the system. The results show that, provided that a force auxiliary ventilation system is properly designed to achieve a pressure balance between a panel and its overlying goat', the system can be used to extract a coal seam overlain by a heating goal. This paper describes the design, installation and performance of the ventilation system during the extraction and recovery phases of the oanel 30110.展开更多
Internal temperature is crucial to plant growth in the greenhouse. We investigated the patterns of constructing and managing greenhouses in Chongqing, and developed an algorithm of heating temperature for closed winte...Internal temperature is crucial to plant growth in the greenhouse. We investigated the patterns of constructing and managing greenhouses in Chongqing, and developed an algorithm of heating temperature for closed winter plastic greenhouses under the conditions of no man-made illumination, no ventilation and hot wind machine as the heating equipment, which are the most adopted pattern of greenhouses in Chongqing area. The algorithm includes two functions of temperature outside the greenhouse, which calculate the values of the warming estimation coefficient (WEC) and the gap between temperatures inside and outside the greenhouse with the measured data of outside temperature, and then give the value of internal temperature; the heat rating of heating facilities required by a greenhouse can be determined by this algorithm with given values of floor area and internal temperature, measured outside temperature and calculated WEC. Verification of the algorithm demonstrates a desirable accuracy of estimation. Algorithms of computing heating temperature for greenhouses of different constructing and managing patterns and in different geographic conditions can also be derived in a similar way. This research presents a paradigm for developing a feasible method to fit out greenhouses with appropriate heating facilities, aiming at energy efficient and cost efficient production.展开更多
The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was de...The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.展开更多
As the position of the transition zone changes obviously, that is, as the transition zone migrates to the north or the south from present position, it affects water or heat balance between the land and the atmosphere ...As the position of the transition zone changes obviously, that is, as the transition zone migrates to the north or the south from present position, it affects water or heat balance between the land and the atmosphere in a considerable degree and has a profound influence on climate in North China. The experiment results in this paper indicate whether in the dry case or in the wet case of the large-scale climatological background field, the surface air temperature in a wide range of the transition zone migration and its surrounding decreases as the transition zone migrates northward. Moreover, the net upward fluxes of the surface long wave radiation and the sensible heat decrease, and the evaporation to the atmosphere increases. As the transition zone migrates southward, the results are opposite. This kind of significant thermal forcing between the land and the atmosphere can excite secondary circulation or circulation cells, which interact with the large-scale circulation systems, changing the atmospheric motion, affecting the water vapor transportation and consequently having an effect on the precipitation.展开更多
The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and t...The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and thermal radiation. The cell efficiency is estimated as a measure of its performance. The results reveal that the temperature within the cell attains significant values. Nevertheless, the temperature dependence of its efficiency along the day time is not pronouncing. It slightly decreases with temperature.展开更多
基金supported by the National Key Fundamental Research&Development Project of China(No.G1999064903).
文摘A 2D full cell thermo-electric model of 160kA drained cell was set up using finiteelement code to calculate its freeze profile, then the drained cell model was modifiedaccording to the freeze profile computed and its heat balance was calculated. Comparedwith that of a 160kA conventional Hall-Heroult cell (H-H cell), though the melts vol-ume of the drained cell reduced greatly, the whole heat loss from it didn't drop downapparently, and an analysis was presented in the paper. On the other hand, the anode-cathode distance (ACD) of a drained cell was much less than that of a H-H cell, sothe voltage drop on it and heat produced decreased too, steps should be taken to keepa workable heat balance on a drained cell.
基金The financial support of the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Automotive Partnership Canada(APC)under APCPJ 459269-13 grant with contributions from Multimatic Technical centre,Ford Motor CompanyCenterline Windsor are acknowledged.Funds from NSERC-RTI program under EQPEQ458441-2014 grant also supported this research.
文摘A promising solid-state coating mechanism based on the cold spray technique provides highly advantageous conditions on thermal-sensitive magnesium alloys.To study the effect of heat balance in cold spray coating on microstructure,experiments were designed to successfully coat AA7075 on AZ31B with two different heat balance conditions to yield a coated sample with tensile residual stress and a sample with compressive residual stress in both coating and substrate.The effects of coating temperature on the microstructure of magnesium alloy and the interfaces of coated samples were then analyzed by SEM,EBSD,TEM in high-and low-heat input coating conditions.The interface of the AA7075 coating and magnesium alloy substrate under both conditions consists of a narrow-band layer with very fine grains,followed by columnar grains of magnesium that have grown perpendicular to the interface.At higher temperatures,this layer became wider.No intermetallic phase was detected at the interface under either condition.It is shown that the microstructure of the substrate was affected by coating temperature,leading to stress relief,dynamic recrystallization and even dynamic grain growth of magnesium under high temperature.Reducing the heat input and increasing the heat transfer decreased microstructural changes in the substrate.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2010DFA72740-05) supported by the International Science & Technology Cooperation Program of China
文摘Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is found that parallel operation pattern is better for solar-soil compound system. Furthermore, the heat balance issue of solar-soil compound system was emphatically analyzed from four aspects, which were annual analysis of heating and cooling load, the heat exchange of ground heat exchanger, capacity determination of solar-assisted heat sottrce and heat balance calculation of solar-soil compound system. Moreover, annual rate of heat balance in a solar-soil source heat pump compound system was calculated with a case study. It is shown that the annual heat unbalance ratio is 19%, which is less than 20%. As a result, the practical solar-soil compound system can basically maintain the heat balance of soil.
基金Sponsored by the Strategic Japanese-Chinese Cooperation Program (Grant No.2011DFA91210)the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2014075),the Fundamental Research Funds for the Central Universities (Grant No.HIT.KISTP.201419)the Natural Science Foundation of Heilongjiang Province (Grant No.E201316)
文摘Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks.
基金This work was co-supported by the National Key Project (Grant No, 96-908-02-03), the NationalNatural Science Foundation of Chi
文摘The responses of sea surface temperature (SST) in the western equatorial Pacific warm pool to the westerly wind bursts (WWBs) play an important role in the relationship between WWB and ENSO. By using data collected from eight buoys of TOGA (Tropical Ocean-Global Atmosphere)- COARE (Coupled Ocean-Atmosphere Response Experiment), the heat balances of the upper ocean in the western equatorial Pacific around 0 degrees, 156 degreesE during two WWB events were calculated according to Stevenson and Niiler's (1983) method. In both events, SST increased before and after the WWBs, while decreased within the WWBs. The SST amplitudes approximated to 1 degreesC. Although sometimes the horizontal heat advections may become the biggest term in the heat balance, the variation of SST was dominated by the surface heat flux. On the other aspect, some different features of the two events are also revealed. The two cases have different variation of mixed layer depth. The depth of mixed layer is almost double in the first case (35 in to 70 m), which is caused by Ekman convergence, while only 10m increments due to entrainment in the second one, There are also differences in the currents structure. The different variations of thermal and currents structure in the mixing layers accounted for the different variation of the heat balance during the two events, especially the advection and residue terms. The seasonal variation of SST in this area is also investigated simply. The first WWB event happened just during the seasonal transition. So we considered that it is a normal season transition rather than a so-called anomaly. That also suggested that the seasonal distinction of the WWB is worthy of more attention in the researches of its relationship to ENSO.
文摘Using the air-sea data set of January, 1983 (the mature phase of the 1982/83 El Nino event), the net radiation on the sea surface, the fluxes of the latent and the sensible heat from ocean to the atmosphere and the net heat gain of the sea surface are calculated over the Indian and the Pacific Oceans for the domain of 35°N-35°S and 45°E-75°W. The results indicate that the upward transfer of the latent and the sensible heat fluxes over the winter hemisphere is larger than that over the summer hemisphere. The sensible heat over the tropical mid Pacific in the Southern Hemisphere is transported from the atmosphere to the ocean, though its magnitude is rather small. The latent heat flux gained by the air over the eastern Pacific is less than the mean value of the normal year. The net radiation, on which the cloud amount has considerable impact, is essentially zonally distributed. Moreover, the sea surface temperature (SST) has a very good correlation with the net radiation, the region of warm SST coinciding with that of the low net radiation. The net radiation obtained by the mid Pacific Ocean is reduced by the SST anomaly during the El Nino event, whereas the atmosphere over there get more latent heat flux, and this results in the diminution of the net heat gain of the ocean. The overview of the heat budget is that the ocean over the winter hemisphere is the energy source of the atmosphere, and that over the summer hemisphere its energy sink.
文摘In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conversion from mechanical energy to electrical energy. Analysis of these test data serves as a measure to indicate deviation from normal operation profile and deterioration of plant performance. This present work implemented the heat balance tests process to three turb- generator units in order to assess the harmony, consistency, and accuracy of results to establish parallel correlation for the test process. The test process involves carrying out a heat balance for the turbo-generators at 50%, 75% and 100% load respectively through the determination of the heat losses through the hydrogen coolers, bearing oil, seal oil and radiation and convention to the atmosphere. Some important results were presented in the paper.
文摘The possibility of underground imbalance between heat emission and absorption has a negative impact on the performance of ground-source heat pump systems (GSHPs). Numerical and experimental researches were made in a residential building, which is supplied with a GSHP system and a ceiling radiation system combined with a replacement fresh air system. EnergyPlus simulations were used to estimate heating and cooling loads, and to assess the heat generated from the water pump, the fan and the heat pump unit. Then, Fluent simulations were used to compare three different control strategies of handling the underground heat exchange. These simulations were strongly based on an experimentally verified model. It is obtained that a ratio between cooling and heating loads is 5.08 : 1 in a case study in Nanjing. Moreover, the control strategy based on the starting time is more efficient and reliable than the temperature and temperature difference strategies to control the underground heat exchange.
文摘Energy balances are a general fundamental approach for analyzing the heat requirements for metallurgical processes.The formulation of heat balance equations was involved by computing the various components of heat going in and coming out of the oxygen steelmaking furnace.The developed model was validated against the calculations of Healy and McBride.The overall heat losses that have not been analyzed in previous studies were quantified by back-calculating heat loss from 35 industrial data provided by Tata Steel.The results from the model infer that the heat losses range from 1.3%to 5.9%of the total heat input and it can be controlled by optimizing the silicon in hot metal,the amount of scrap added and the postcombustion ratio.The model prediction shows that sensible heat available from the hot metal accounts for around 66%of total heat input and the rest from the exothermic oxidation reactions.Out of 34%of the heat from exothermic reactions,between 20%and 25%of heat is evolved from the oxidation of carbon to carbon monoxide and carbon dioxide.This model can be applied to predict the heat balance of any top blown oxygen steelmaking technology but needs further validation for a range of oxygen steelmaking operations and conditions.
基金The National Key Research and Development Program of China(2016YFC0502001)The Humanities and Social Science Research Project of Hebei Education Department(SD192007)。
文摘The grazing exclusion program used by the Tibetan government to protect the ecological environment has changed the vegetation and impacted the surface heat balance in North Tibet. However, little information is available to describe the in?uences of the current grazing exclusion program on local surface heat balance. This study uses the records of fenced grassland patch locations to identify the impact of grazing exclusion on surface heat balance in North Tibet. The records of fenced grassland patch locations, including the longitude, latitude, and elevation of the vertices of each fenced patch(polygon shapes), were provided by the agriculture and animal husbandry bureaus of the counties where the patches were located. ArcGIS 10.2 was used to create polygon shapes based on patch location records. Based on satellite data and the surface heat balance system determined by the model, values for changes in land surface temperature(LST), albedo and evapotranspiration(ET) induced by grazing exclusion were obtained. All of these can influence surface heat balance and alter the fluctuation of LST in the northern Tibetan Plateau. The LST trends for day and night showed an asymmetric diurnal variation, with a larger magnitude of warming in the day than cooling at night. The maximum decrease in absorbed shortwave of LST(?0.5 ? ?0.4 ℃ per decade) occurred in the central region, while the minimum decrease(?0.2 ? ?0.1 ℃ per decade) occurred in the eastern region. The decreased latent heat lead to the LST increased maximum(>1 ℃ per decade) occurred in the central region, The eastern region increased at a rate of 0.2?0.5 ℃ per decade, while the minimum increase(0?0.1 ℃ per decade) occurred in the northwestern region.
基金supported by the Innovatory Group Program of the Natural Science Foundation of Hubei Province (No. 2004ABC001)the Open Foundation of State Key Laboratory of Powder Metallurgy of Center South University (No. 200506123102A), China
文摘In order to improve parts accuracy, a method of adding heat balance support (HBS) was proposed, and the detailed algorithm for generating HBS was developed. A number of experiments and a comparison between similar softwares, showed that the algorithm is efficient and feasible. Moreover, different features of riBS were studied for different kinds of materials, such as PS and nylon. The research findings indicate that automatically adding HBS can significantly improve the accuracy of the parts, and that the algorithm for generating HBS is efficient and precise.
文摘Biomass can be converted intoflammable gas,charcoal,wood vinegar,wood tar oil and noncombustible materials with thermo-chemical pyrolysis reactions.Many factors influence these processes,such as the properties of the raw materials,and temperature control and these will affect the products that are produced.Based on the data from a straw pyrolysis demonstration project,the mass and heat balance of the biomass pyrolysis process were analyzed.The statistical product and service solutions(SPSS)statistical method was used to analyze the data which were monitored on-site.A cost-benefit analysis was then used to study the viability of commercializing the project.The analysis included net present value,internal rate of return and investment payback period.These results showed that the straw pyrolysis project has little risk,and will produce remarkable economic benefits.
文摘This study concerns the heat transfer processes during ice accretion on wires. The steady state heat balance equation assumed to describe the thermodynamics at the surface of a current heated wire subjected to icing is obtained by analyzing and computing each terms of heat flux. The surface temperature of wire is derived from the heat balance equation, which gives out a proposed estimation of the current intensity to prevent the wire icing
基金National Natural Science Founda-tion of China under Grant Nos.40233034 , 40075019KZCX2-SW-210National Natural Science Foun-dation of China under Grant No.40305011.
文摘In this study, the e?ect of the lower boundary position selection for the Fourier equation on heat transfer and energy balance in soil is evaluated. A detailed numerical study shows that the proper position of the lower boundary is critical when solving the Fourier equation by using zero heat ?ux as the lower boundary condition. Since the position de?nes the capacity of soil as a heat sink or source, which absorbs and stores radiation energy from the sky in summer and then releases the energy to the atmosphere in winter, and regulates the deep soil temperature distribution, the depth of the position greatly in?uences the heat balance within the soil as well as the interaction between the soil and the atmosphere. Based on physical reasoning and the results of numerical simulation, the proper depth of the position should be equal to approximately 3 times of the annual heat wave damping depth. For most soils, the proper lower boundary depth for the Fourier equation should be around 8 m to 15 m, depending on soil texture.
基金supported by the National Natural Science Foundation of China ( No. 40971187 and 41472243 )the Funded By Open Research Fund Program of Key Laboratory of Digital Mapping and Land Information Application Engineering,National Administration of Surveying,Mapping and Geoinformation ( No. GCWD201402 )
文摘Heat balance of urban ecosystem is a key point for the study of urban climate and micro-climate pattern and its change mechanism. Urban heat island effect is becoming increasingly serious,which is mainly caused by the change of the earth's surface cover and the anthropogenic heat release. In this study,the simulation experiment for the anthropogenic heat release was designed according to the heat balance principle. A set of buildings of miniature city were used to constitute the residential area,U grooves were applied to simulate the single building,and the fluorescent lamps in the U groove were regarded as the heat sources of the anthropogenic heat release. The simulation experiment was launched with long-short wave sun photometer,sonic anemothermometer and heat flow gauge in the experiment site. Then the net solar radiation,sensible heat flux and heat flux into the ground were determined. The quantities of the anthropogenic heat release were calculated based on the heat balance principle,and were compared with the theoretical power consumption of the fluorescent lamps. The root mean square error( RMSE) of the simulation for the anthropogenic heat release reaches0. 078 W·m- 2,a comparatively high precision,which showes that the anthropogenic heat release can be accurately determined through the simulation experiments. This study provided a scientific method for the purpose of monitoring the anthropogenic heat release.
基金supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents and Science Research Innovative Group of Resources and Environment Engineering College of Shandong University of Science and Technology (No. 2012ZHTD06)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2013RCJJ049)+1 种基金the China Postdoctoral Science Foundation (No. 2013M541942)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133718120013)
文摘Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel 30110 of the #3-1 coal seam, which is about 30-40 rn below the heating goaf of the #2-2 seam at Longhua underground coal mine, Shanxi Province, China. Booster fans and ventilation control devices such as doors and regulators were used in the system. The results show that, provided that a force auxiliary ventilation system is properly designed to achieve a pressure balance between a panel and its overlying goat', the system can be used to extract a coal seam overlain by a heating goal. This paper describes the design, installation and performance of the ventilation system during the extraction and recovery phases of the oanel 30110.
基金a grant from the Major Programs of the Ministry of Science and Technology during the 10th Five-Year Plan Period from (2001BA04A)
文摘Internal temperature is crucial to plant growth in the greenhouse. We investigated the patterns of constructing and managing greenhouses in Chongqing, and developed an algorithm of heating temperature for closed winter plastic greenhouses under the conditions of no man-made illumination, no ventilation and hot wind machine as the heating equipment, which are the most adopted pattern of greenhouses in Chongqing area. The algorithm includes two functions of temperature outside the greenhouse, which calculate the values of the warming estimation coefficient (WEC) and the gap between temperatures inside and outside the greenhouse with the measured data of outside temperature, and then give the value of internal temperature; the heat rating of heating facilities required by a greenhouse can be determined by this algorithm with given values of floor area and internal temperature, measured outside temperature and calculated WEC. Verification of the algorithm demonstrates a desirable accuracy of estimation. Algorithms of computing heating temperature for greenhouses of different constructing and managing patterns and in different geographic conditions can also be derived in a similar way. This research presents a paradigm for developing a feasible method to fit out greenhouses with appropriate heating facilities, aiming at energy efficient and cost efficient production.
基金the financial supports from the National Natural Science Foundation of China(No.52005244)the Scientific Research Fund of Hunan Provincial Education Department,China(Nos.18B285,18B552)+1 种基金the Natural Science Foundation of Hunan Provincial,China(Nos.2019JJ50510,2019JJ70077)Young Scholars Program of Furong Scholar Program,China.
文摘The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment.
文摘As the position of the transition zone changes obviously, that is, as the transition zone migrates to the north or the south from present position, it affects water or heat balance between the land and the atmosphere in a considerable degree and has a profound influence on climate in North China. The experiment results in this paper indicate whether in the dry case or in the wet case of the large-scale climatological background field, the surface air temperature in a wide range of the transition zone migration and its surrounding decreases as the transition zone migrates northward. Moreover, the net upward fluxes of the surface long wave radiation and the sensible heat decrease, and the evaporation to the atmosphere increases. As the transition zone migrates southward, the results are opposite. This kind of significant thermal forcing between the land and the atmosphere can excite secondary circulation or circulation cells, which interact with the large-scale circulation systems, changing the atmospheric motion, affecting the water vapor transportation and consequently having an effect on the precipitation.
文摘The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and thermal radiation. The cell efficiency is estimated as a measure of its performance. The results reveal that the temperature within the cell attains significant values. Nevertheless, the temperature dependence of its efficiency along the day time is not pronouncing. It slightly decreases with temperature.