In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkag...In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.展开更多
Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile ...Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile fibers and multi-variance fibers used in textile industry, the properties of above two kinds of differential polyester filaments after drawing in different heat conditions were studied. Finally following conclusions were obtained: Firstly, the tenacity and elongation at break decreases with the rise of Tp. Secondly, the tenacity rises but the elongation at break decreases with the increase of Tb. Then, when the Tb is low, both the shrinkage in boiling water and hi hot air decreases with the rise of Tp, while, when the Tb is high, both the shrinkage rises with the rise of Tp. The last, both the shrinkage decreases with the rise of Tb.展开更多
This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on th...This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.展开更多
文摘In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling)-based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally ob-served the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100 × 50 × 50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240?C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures;50?C, 70?C, 90?C, and 110?C. After the produced specimens naturally cooled down to room temperature, their deformed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120?C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.
文摘Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile fibers and multi-variance fibers used in textile industry, the properties of above two kinds of differential polyester filaments after drawing in different heat conditions were studied. Finally following conclusions were obtained: Firstly, the tenacity and elongation at break decreases with the rise of Tp. Secondly, the tenacity rises but the elongation at break decreases with the increase of Tb. Then, when the Tb is low, both the shrinkage in boiling water and hi hot air decreases with the rise of Tp, while, when the Tb is high, both the shrinkage rises with the rise of Tp. The last, both the shrinkage decreases with the rise of Tb.
基金Innovation Fund Project of National Commercial Aircraft Manufacturing Engineering Research Center(No.SAM C14-JS-15-048)Natural Science Foundation of Shanghai,China(No.13ZR1400400)the Fundamental Research Funds for the Central Universities,China
文摘This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.