The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully ...This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.展开更多
In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the dif...In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.展开更多
Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum ...Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy.展开更多
Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is ...Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..展开更多
High temperatures have a detrimental effect on growth, development, and yield of Brassica napus. Even a short period of heat stress can lead to yield losses of 15%–20%. A collection of spring-type accessions availabl...High temperatures have a detrimental effect on growth, development, and yield of Brassica napus. Even a short period of heat stress can lead to yield losses of 15%–20%. A collection of spring-type accessions available in Germplasm Resources Information Network(GRIN)were used to assess the effect of short periods of high-temperature stress at the early flowering stage of B. napus. Two sets of accessions with three replications per set were grown in a greenhouse at 22/18 °C day/night temperatures. Plants from the second set at the 6-day flowering stage were exposed to heat-stress conditions(maximum temperature up to 35 °C) in a plant growth chamber for five days. The heat-stressed plants were then allowed to recover in a greenhouse. Pollen sterility, sterile/aborted pods, and number of pods on main raceme were recorded for both control(set 1) and heat stressed(set 2) plants.Heat susceptibility indices for all three traits were calculated and an association-mapping study was conducted using 37,539 Single Nucleotide Polymorphisms(SNPs) to identify genomic regions controlling the heat stress traits. A total of 5, 8, and 7 quantitative trait loci(QTL) were associated with pollen sterility, sterile/aborted pods, and number of pods on main raceme, respectively. Together they explained respectively 46.3%, 60.5%, and 60.6% of phenotypic variation. Candidate genes in the QTL regions included genes associated with flowering, male sterility, pollen abortion, embryo abortion reducing pollen development,and pod development.展开更多
In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the wh...In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the whole system is established, and simulation of the system is adopted in Matlab/Simulink. The simulation result shows that the feedback system with feed-forward block controls the heat value very well, and the simulation result can effectively guide the engineering design of the heat value control system, and the efficiency of engineering is improved.展开更多
This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system....This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of different refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-conditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump.The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.展开更多
Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesi...Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesis to allow the economic performance to be achievable in a practical operating environment.This paper proposes a method for simultaneous synthesis of flexible and controllable HEN by considering their coupling.The key idea is to add the bypasses with optimized initial fractions and positions to explore such coupling,and consequently enabling HENs to be operated successfully over a range of disturbance variations.These are implemented by identifying and quantifying disturbance propagations,and then examining the sensitivity of bypasses to the entire HEN.In this way,the superstructurebased mixed integer non-linear programming(MINLP)with objective function of minimizing the total annual cost is formulated.A case study is used to demonstrate the application of the proposed method.Quantitative measures and dynamic simulation show the ability to provide the satisfactory flexibility and controllability of the obtained HEN.展开更多
Application of magnetic flux controllers/concentrators to induction heating coils can drastically improve the process efficiency and heat pattern control. Presentation includes: benefits provided by flux controllers, ...Application of magnetic flux controllers/concentrators to induction heating coils can drastically improve the process efficiency and heat pattern control. Presentation includes: benefits provided by flux controllers, materials available for controllers, application techniques, computer assisted design of induction coils with concentrators, examples of applications. Depending on induction system design, magnetic flux controllers can concentrate heating in a specified area, change heat source distribution and shield a particular part zone or external area preventing unintended eddy current heating. Besides of the coil efficiency improvement and optimal power distribution, magnetic flux controllers reduce the coil current demand from a supplying circuitry thus strongly reducing losses in busswork, cables, transformers and inverter components. Improvement that can be achieved due to magnetic flux controllers is case dependable. 2D and 3D computer simulation allows the designer to predict accurately effect of controllers on the coil parameters and temperature distribution and optimize the whole electromagnetic system. Special attention in presentation is paid to new magnetodielectric materials optimized for induction heating conditions. These materials have high magnetic permeability and saturation flux density, excellent machinability, good chemical and temperature resistance. Concentrators from these materials can work in a wide range of frequencies and specific powers. Examples of magnetic flux controller application include surface hardening of shafts and gears, induction surface hardfacing and brazing.展开更多
In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the...In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the boundary of the domain is moving and the shape of theboundary is defined by a known time-dependent function. By making use of the Galerkin finite element method, we first project the original optimal control problem into a semi-discrete optimal control problem governed by a system of ordinary differential equations. Then, based on the aforementioned semi-discrete problem, we apply the control parameterization method to obtain an optimal parameter selection problem governed by a lumped parameter system, which can be solved as a nonlinear optimization problem by a Sequential Quadratic Programming (SQP) algorithm. The numerical simulation is given to illustrate the effectiveness of our numerical approximation for the variable domain problem with the finite element method and the control parameterization method.展开更多
2195 aluminum-lithium alloy was widely applied in the aviation and aerospace industry, but it is highly susceptible to pitting and intergranular corrosion undergoing sever corrosive circumstance and moisture atmospher...2195 aluminum-lithium alloy was widely applied in the aviation and aerospace industry, but it is highly susceptible to pitting and intergranular corrosion undergoing sever corrosive circumstance and moisture atmosphere. To solve this problem and consequently to prolong its service life, a multi-step-heating-rate(MSRC) process was carried out. Investigations were carried out to find the effect of the MSRC process on the alloys corrosion resistance. It is found that the MSRC process is more favorable for the uniform phase precipitation by comparing the corrosion resistance of samples treated by traditional heat treatments. The potential difference between phases can be reduced and intergranular corrosion is able to be prohibited efficiently. Besides, the rare earth infiltration is beneficial to improving the corrosion resistance. As heating time increases, the corrosion resistance declines gradually, samples treated by artificial aging and solid solution also exhibit a better corrosion resistance.展开更多
We consider the semilinear heat equation with globally Lipschitz non-linearity involving gradient terms in a bounded domain of R^n. In this paper, we obtain explicit bounds of the cost of approximate controllability, ...We consider the semilinear heat equation with globally Lipschitz non-linearity involving gradient terms in a bounded domain of R^n. In this paper, we obtain explicit bounds of the cost of approximate controllability, i.e., of the minimal norm of a control needed to control the system approximately. The methods we used combine global Carleman estimates, the variational approach to approximate controllability and Schauder's fixed point theorem.展开更多
Various kinds of pathogenic bacteria derived from the intestinal tract of animals exist in compost material like cow dung. In order to sterilize the pathogenic bacteria completely in compost material, the cow dung was...Various kinds of pathogenic bacteria derived from the intestinal tract of animals exist in compost material like cow dung. In order to sterilize the pathogenic bacteria completely in compost material, the cow dung was put into a heat treatment machine in pilot plan, and harmless condition in short time was examined. The results indicated, pathogenic indicator bacteria such as coliform bacteria, fecal coliform, Escherichia coli and salmonella were all 106 cfu/g dw at the beginning, died rapidly when cow dung temperature rose to above 50~C, and not detected at 54-68~C for 6-24 h heat treatment. Coliform bacteria and salmonella in heated cow dung were not detected by re-growth culture and enrichment culture examination. Moreover, it was hardly influenced on the fermentation ability of composting microbe, organic decomposition bacteria. During heat treatment, the mesophile decreased rapidly and the thermophile stabilized or increased, and the most of composting microbe were bacillus in cow dung by fluorescence microscope, this indicated that bacillus was dominator and composting microbe in composting process.展开更多
This paper focuses on theoretical investigation of active vibration control of a cantilever beam using heat actuation. The actuator is a thin metal bar rigidly bonded to the beam on one face and subject to heat input ...This paper focuses on theoretical investigation of active vibration control of a cantilever beam using heat actuation. The actuator is a thin metal bar rigidly bonded to the beam on one face and subject to heat input on the opposite face. The actuator then works like a piezoelectric actuator, and expands and contracts in response to applied heat. We assume that the actuator is insulated so that no heat is transferred to the beam, ensuring that the heat does not alter the beam’s thermal state. To avoid necessity of cooling, we consider two actuators working together at the same span-wise location, one on the upper and one on the lower face of the beam. Then, the beam can be bent up and down by applying heat to the lower and upper actuators, respectively. The governing equations are partial differential equations for one-dimensional heat conduction of the actuators and the bending vibration of the beam with attached actuators. For an approximate solution, Rayleigh-Ritz method replaces the partial differential equations with a system of ordinary differential equations. A control model is obtained from a low-dimensional representation of the system, and used to design feedback control and observer by means of LQR and Kalman-Bucy filtering techniques. The control signal obtained is introduced into the plant model, a high-dimensional representation of the system, to mimic the true system as closely as possible. In a numerical application, the response of the beam to an initial excitation is simulated, which demonstrates that the heat actuators are in fact effective in active vibration control of the beam.展开更多
In this experimental study, a heat pump dryer was designed and manufactured, in which drying air temperature was controlled PID. Manufactured heat pump dryer was tested in drying kiwi, avocado and banana from among tr...In this experimental study, a heat pump dryer was designed and manufactured, in which drying air temperature was controlled PID. Manufactured heat pump dryer was tested in drying kiwi, avocado and banana from among tropical fruits and energy and exergy analyses were made. Drying air temperature changed between 40 oC - 40.2 oC while drying the tropical fruits. Before the drying process in heat pump dryer, initial moisture contents were determined as 4.31 g water / g dry matter for kiwi, 1.51 g water / g dry matter for avocado and 4.71 g water / g dry matter for banana. Then tropical fruits were dried separately in heat pump dryer. Drying air temperature was kept unchanged with the error of +0.2 oC. Drying air velocity changed between 0.3 and 0.4 m/s in a period of 310 min. COPws of the heat pump dryer was calculated as 2.49 for kiwi, 2.47 for banana and 2.41 for avocado during the experiments. EUR changed between 13 % and 28 % for kiwi, 18% and 33% for avocado and 13% and 42% for banana in heat pump dryer.展开更多
This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating syste...This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.展开更多
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
基金Project 2006CB202200 supported by the National Basic Research Program of Chinathe National Major Project of Ministry of Education (304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (NoIRT0656)
文摘This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.
基金Project(2018CXNL08) supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to solve the heat damages in deep mines, a cool-wall cooling technology and its working model are proposed based on the principles of heat absorption and insulation in this paper. During this process, the differential equation of thermal equilibrium for roadway control unit is built, and the heat adsorption control equation of cool-wall cooling system is derived by an integral method, so as to obtain the quantitative relationship among the heat absorption capacity of cooling system, the heat dissipating capacity of surrounding rock and air temperature change. Then, the heat absorption capacity required by air temperature less than the standard value for safety is figured out by section iterative method with the simultaneous solution of heat absorption control equation and the heat dissipation density equation of surrounding rock. Finally, the results show that as the air temperature at the inlet of roadway is 25 ℃, the roadway wall is covered by heat-absorbing plate up to 39% of the area, as well as the cold water is injected into the heat-absorbing plate with a temperature of 20 ℃ and a mass flow of 113.6 kg/s, the air flow temperature rise per kilometer in the roadway can be less than 3 ℃.
文摘Design and control of pressure-swing distillation(PSD) with different heat integration modes for the separation of methyl acetate/methanol azeotrope are explored using Aspen Plus and Aspen Dynamics. First, an optimum steady-state separation configuration conditions are obtained via taking the total annual cost(TAC) or total reboiler heat duty as the objective functions. The results show that about 27.68% and 25.40% saving in TAC can be achieved by the PSD with full and partial heat integration compared to PSD without heat integration. Second,temperature control tray locations are obtained according to the sensitivity criterion and singular value decomposition(SVD) analysis and the single-end control structure is effective based on the feed composition sensitivity analysis. Finally, the comparison of dynamic controllability is made among various control structures for PSD with partial and full heat integration. It is shown that both control structures of composition/temperature cascade and pressure-compensated temperature have a good dynamic response performance for PSD with heat integration facing feed flowrate and composition disturbances. However, PSD with full heat integration performs the poor controllability despite of a little bit of economy.
文摘Aiming at characteristic of time delay, time-varying parameters and much disturb in glass greenhouse heating system, fuzzy smith cascade compound control policy based on typical PID cascade compound control policy is proposed. Simulation results show that it is effective to overcome the influence of time delay on stability of control system and the system possesses strong robust and good dynamic performance..
基金funded by the Northern Canola Growers Association (grant number NCGA-2014-10), ND, USA
文摘High temperatures have a detrimental effect on growth, development, and yield of Brassica napus. Even a short period of heat stress can lead to yield losses of 15%–20%. A collection of spring-type accessions available in Germplasm Resources Information Network(GRIN)were used to assess the effect of short periods of high-temperature stress at the early flowering stage of B. napus. Two sets of accessions with three replications per set were grown in a greenhouse at 22/18 °C day/night temperatures. Plants from the second set at the 6-day flowering stage were exposed to heat-stress conditions(maximum temperature up to 35 °C) in a plant growth chamber for five days. The heat-stressed plants were then allowed to recover in a greenhouse. Pollen sterility, sterile/aborted pods, and number of pods on main raceme were recorded for both control(set 1) and heat stressed(set 2) plants.Heat susceptibility indices for all three traits were calculated and an association-mapping study was conducted using 37,539 Single Nucleotide Polymorphisms(SNPs) to identify genomic regions controlling the heat stress traits. A total of 5, 8, and 7 quantitative trait loci(QTL) were associated with pollen sterility, sterile/aborted pods, and number of pods on main raceme, respectively. Together they explained respectively 46.3%, 60.5%, and 60.6% of phenotypic variation. Candidate genes in the QTL regions included genes associated with flowering, male sterility, pollen abortion, embryo abortion reducing pollen development,and pod development.
文摘In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the whole system is established, and simulation of the system is adopted in Matlab/Simulink. The simulation result shows that the feedback system with feed-forward block controls the heat value very well, and the simulation result can effectively guide the engineering design of the heat value control system, and the efficiency of engineering is improved.
基金Supported by Hubei Provincial Natural Science Foundation(2008CDB363)
文摘This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of different refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-conditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump.The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.
基金Supported by the National Natural Science Foundation of China(21576036,21776035)
文摘Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesis to allow the economic performance to be achievable in a practical operating environment.This paper proposes a method for simultaneous synthesis of flexible and controllable HEN by considering their coupling.The key idea is to add the bypasses with optimized initial fractions and positions to explore such coupling,and consequently enabling HENs to be operated successfully over a range of disturbance variations.These are implemented by identifying and quantifying disturbance propagations,and then examining the sensitivity of bypasses to the entire HEN.In this way,the superstructurebased mixed integer non-linear programming(MINLP)with objective function of minimizing the total annual cost is formulated.A case study is used to demonstrate the application of the proposed method.Quantitative measures and dynamic simulation show the ability to provide the satisfactory flexibility and controllability of the obtained HEN.
文摘Application of magnetic flux controllers/concentrators to induction heating coils can drastically improve the process efficiency and heat pattern control. Presentation includes: benefits provided by flux controllers, materials available for controllers, application techniques, computer assisted design of induction coils with concentrators, examples of applications. Depending on induction system design, magnetic flux controllers can concentrate heating in a specified area, change heat source distribution and shield a particular part zone or external area preventing unintended eddy current heating. Besides of the coil efficiency improvement and optimal power distribution, magnetic flux controllers reduce the coil current demand from a supplying circuitry thus strongly reducing losses in busswork, cables, transformers and inverter components. Improvement that can be achieved due to magnetic flux controllers is case dependable. 2D and 3D computer simulation allows the designer to predict accurately effect of controllers on the coil parameters and temperature distribution and optimize the whole electromagnetic system. Special attention in presentation is paid to new magnetodielectric materials optimized for induction heating conditions. These materials have high magnetic permeability and saturation flux density, excellent machinability, good chemical and temperature resistance. Concentrators from these materials can work in a wide range of frequencies and specific powers. Examples of magnetic flux controller application include surface hardening of shafts and gears, induction surface hardfacing and brazing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61374096 and 61104048)the Natural Science Foundation of Zhejiang Province of China(Grant No.Y6110751)
文摘In this paper, we consider a numerical approximation for the boundary optimal control problem with the control constraint governed by a heat equation defined in a variable domain. For this variable domain problem, the boundary of the domain is moving and the shape of theboundary is defined by a known time-dependent function. By making use of the Galerkin finite element method, we first project the original optimal control problem into a semi-discrete optimal control problem governed by a system of ordinary differential equations. Then, based on the aforementioned semi-discrete problem, we apply the control parameterization method to obtain an optimal parameter selection problem governed by a lumped parameter system, which can be solved as a nonlinear optimization problem by a Sequential Quadratic Programming (SQP) algorithm. The numerical simulation is given to illustrate the effectiveness of our numerical approximation for the variable domain problem with the finite element method and the control parameterization method.
基金Project(51471050105HK0101) supported by the National Key Laboratory of Precision Thermal Treatment, Harbin Institute of Technology,China
文摘2195 aluminum-lithium alloy was widely applied in the aviation and aerospace industry, but it is highly susceptible to pitting and intergranular corrosion undergoing sever corrosive circumstance and moisture atmosphere. To solve this problem and consequently to prolong its service life, a multi-step-heating-rate(MSRC) process was carried out. Investigations were carried out to find the effect of the MSRC process on the alloys corrosion resistance. It is found that the MSRC process is more favorable for the uniform phase precipitation by comparing the corrosion resistance of samples treated by traditional heat treatments. The potential difference between phases can be reduced and intergranular corrosion is able to be prohibited efficiently. Besides, the rare earth infiltration is beneficial to improving the corrosion resistance. As heating time increases, the corrosion resistance declines gradually, samples treated by artificial aging and solid solution also exhibit a better corrosion resistance.
基金supported by the Natural Science Foundation of China (No.10371136,10771222)
文摘We consider the semilinear heat equation with globally Lipschitz non-linearity involving gradient terms in a bounded domain of R^n. In this paper, we obtain explicit bounds of the cost of approximate controllability, i.e., of the minimal norm of a control needed to control the system approximately. The methods we used combine global Carleman estimates, the variational approach to approximate controllability and Schauder's fixed point theorem.
文摘Various kinds of pathogenic bacteria derived from the intestinal tract of animals exist in compost material like cow dung. In order to sterilize the pathogenic bacteria completely in compost material, the cow dung was put into a heat treatment machine in pilot plan, and harmless condition in short time was examined. The results indicated, pathogenic indicator bacteria such as coliform bacteria, fecal coliform, Escherichia coli and salmonella were all 106 cfu/g dw at the beginning, died rapidly when cow dung temperature rose to above 50~C, and not detected at 54-68~C for 6-24 h heat treatment. Coliform bacteria and salmonella in heated cow dung were not detected by re-growth culture and enrichment culture examination. Moreover, it was hardly influenced on the fermentation ability of composting microbe, organic decomposition bacteria. During heat treatment, the mesophile decreased rapidly and the thermophile stabilized or increased, and the most of composting microbe were bacillus in cow dung by fluorescence microscope, this indicated that bacillus was dominator and composting microbe in composting process.
文摘This paper focuses on theoretical investigation of active vibration control of a cantilever beam using heat actuation. The actuator is a thin metal bar rigidly bonded to the beam on one face and subject to heat input on the opposite face. The actuator then works like a piezoelectric actuator, and expands and contracts in response to applied heat. We assume that the actuator is insulated so that no heat is transferred to the beam, ensuring that the heat does not alter the beam’s thermal state. To avoid necessity of cooling, we consider two actuators working together at the same span-wise location, one on the upper and one on the lower face of the beam. Then, the beam can be bent up and down by applying heat to the lower and upper actuators, respectively. The governing equations are partial differential equations for one-dimensional heat conduction of the actuators and the bending vibration of the beam with attached actuators. For an approximate solution, Rayleigh-Ritz method replaces the partial differential equations with a system of ordinary differential equations. A control model is obtained from a low-dimensional representation of the system, and used to design feedback control and observer by means of LQR and Kalman-Bucy filtering techniques. The control signal obtained is introduced into the plant model, a high-dimensional representation of the system, to mimic the true system as closely as possible. In a numerical application, the response of the beam to an initial excitation is simulated, which demonstrates that the heat actuators are in fact effective in active vibration control of the beam.
文摘In this experimental study, a heat pump dryer was designed and manufactured, in which drying air temperature was controlled PID. Manufactured heat pump dryer was tested in drying kiwi, avocado and banana from among tropical fruits and energy and exergy analyses were made. Drying air temperature changed between 40 oC - 40.2 oC while drying the tropical fruits. Before the drying process in heat pump dryer, initial moisture contents were determined as 4.31 g water / g dry matter for kiwi, 1.51 g water / g dry matter for avocado and 4.71 g water / g dry matter for banana. Then tropical fruits were dried separately in heat pump dryer. Drying air temperature was kept unchanged with the error of +0.2 oC. Drying air velocity changed between 0.3 and 0.4 m/s in a period of 310 min. COPws of the heat pump dryer was calculated as 2.49 for kiwi, 2.47 for banana and 2.41 for avocado during the experiments. EUR changed between 13 % and 28 % for kiwi, 18% and 33% for avocado and 13% and 42% for banana in heat pump dryer.
文摘This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load shifting compared with some reference cases.