[ Objective ] This study was to express and purify Arabidopsis thaliana heat shock factor HSF1. [ Method ] Using Escherichia coli M15 harboring HSF1 (pQE32/His6-HSF1, pREP4) as experimental materials, HSF1 was induc...[ Objective ] This study was to express and purify Arabidopsis thaliana heat shock factor HSF1. [ Method ] Using Escherichia coli M15 harboring HSF1 (pQE32/His6-HSF1, pREP4) as experimental materials, HSF1 was induced to express with isopropyl-β-D-galactoside (IPTG) ; then the expression product was purified using Ni-NTA-agarose affinity chromatography and analyzed by SDS-PAGE. [Result] HSF1 of Arabidopsis thaliana was successfully expressed and purified. [ Conclusion] This study provides materials for understanding the blinding site of HSF1 on Arabidopsis thaliana chromosome, further laying a good foundation for revealing the regulatory mechanism and physiological function of HSF1.展开更多
Objective: To investigate the role of transcription factor Egr-1 in liver injury following hemorrhagic shock (HS) /resuscitation (R). Methods: Both Egr-1 knockout (KO) and wild-type (WT) mice were subjected to HS and ...Objective: To investigate the role of transcription factor Egr-1 in liver injury following hemorrhagic shock (HS) /resuscitation (R). Methods: Both Egr-1 knockout (KO) and wild-type (WT) mice were subjected to HS and HSR injuries. The expressions of TNF-α, IL-6, G-CSF and ICAM-1 mRNAs in the liver were examined by RT-PCR, and their serum levels were measured by ELISA. The liver inflammatory infiltration and liver injury in both Egr-1 WT and KO mice following HS/R were evaluated by liver MPO content, serum ALT level and histological examination. Results: Egr-1 inhibition resulted in less mRNA expression of TNF-α, IL-6 , G-CSF and ICAM-1 in the liver, and lower serum levels of TNF-α, IL-6, G-CSF and ICAM-1 antigens in Egr-1 KO mice following HS/R. The liver inflammatory infiltration and liver injury were less severe in Egr-1 KO mice following HS/R, as evidenced by lower serum ALT level, lower hepatic MPO content and histological manifestations. Conclusion: Our data suggest that transcription factor Egr-1 is involved in regulating the expression of inflammatory response genes and plays a role in liver injury following HS/R.展开更多
Objective-To investigate the effects of heat shock transcription factor 1) gene on the constitutivety expressed αB-CrystaUin (aBC) in mice myocardium. Methods-The expression levels of constitutive aBC in HSF1 knockou...Objective-To investigate the effects of heat shock transcription factor 1) gene on the constitutivety expressed αB-CrystaUin (aBC) in mice myocardium. Methods-The expression levels of constitutive aBC in HSF1 knockout (hsf1 - /- ) and HSFl wild type (As/1 + /+) mice myocardium were evaluated by western blot and immunohistochemistry. Results : The αBC levels in hsfl -/- and hsfl +/+ were 68. 42±4. 16, 100. 00±7. 58, respectively (P<0. 05, cytoso-lic fraction) , and 20. 53±1. 01, 37. 55±1. 91, respectively (P<0. 05, pellet fraction). The aBC signals decreased significantly in hsfl -/- myocardium when compared with those in hsfl +/+ myocardium stained with fluorescence immunohistochemistry. Conclusion-HSF1 is an important, but not the only factor, which mediates the constitutively expressed aBC.展开更多
[ Objective] This study aimed to screen target genes regulated by heat shock factor AtHsfAla in Arabidopsis thaliana. [ Method] Using AtHsfAla-in- serted mutant athsfala (SALK-068042) and wild-type A. thaliana seedl...[ Objective] This study aimed to screen target genes regulated by heat shock factor AtHsfAla in Arabidopsis thaliana. [ Method] Using AtHsfAla-in- serted mutant athsfala (SALK-068042) and wild-type A. thaliana seedlings as experimental materials, target genes regulated by heat shock factor AtHsfAla were screened by microarray assay. Differentially expressed genes were screened by multiple method. Specific functions of differentially expressed genes were analyzed by gene ontology (GO) analysis. Signal transduction pathways, in which differentia|ly expressed genes were involved, were analyzed by pathway analysis. Gene-gene interaction network was constructed by Signal-Net. [ Result] A total of 3 672 differentially expressed genes were screened out. Up-regulated differentially expressed genes were involved in 198 functions and 7 signal transduction pathways; down-regulated differentially expressed genes were involved in 94 functions and 10 signal transduction pathways. In the signal transduction network, it was found that cwlNV4 and HXK3 had relatively high ability of mediation; AT1 G14240 and cwlNV4 ex- hibited the most interactions with other genes, which were located in key positions throughout the gene-gene interaction network. [ Conclusion] Heat shock factor AtHsfAla regulates a large number of target genes in A. thaliana.展开更多
[ Objective ] Heat shock factors (HSFs) are the major transcription factors of eukaryotic heat shock responses. This study aims to investigate the adversity stress tolerance functions of Arabidopsis heat shock facto...[ Objective ] Heat shock factors (HSFs) are the major transcription factors of eukaryotic heat shock responses. This study aims to investigate the adversity stress tolerance functions of Arabidopsis heat shock factor AtHsfAla, which has important significance for in-depth understanding of adversity stress tolerance mechanisms of plants and further utilization of heat shock factor genes. [Method] Genomic DNA of Arabidopsis was extracted with CTAB method and purified to obtain Arabidopsis DNA samples for in vitro site-specific recombination cloning ( Gateway cloning) to construct plant expression vector of heat shock factor AtHs- fAla. Firstly, donor vector pDONR 201/AtHsfAla was constructed based on attB and attP site-specific recombination method (BP reaction), to identify E. coli transformants harboring correct sequence of AtHsfAla by sequencing; secondly, plant expression vector pBTWG2/AttlsfAla overexpressing Arabidopsis heat shock factor AtHsfAla was constructed based on attL and attR site-specific recombination method (LR reaction), to screen E. coli transformants harboring target plasmid. [ Result] Plant expression vector of Arabidopsis heat shock factor gene AtHsfAla was constructed successfully. [ Conclusion] This study not only provided experimental materials for acquiring transgenic plants overexpressing heat shock transcription factor AtHsfAla, but also laid the foundation for further investigation of the diversity of adversity stress tolerance functions reanlated by HSFs.展开更多
Objective: Heat shock factor 1(HSF1), a transcriptional regulator of heat shock proteins(HSPs), is an attractive therapeutic target for cancer. However, only a few HSF1 inhibitors have been identified so far.Methods: ...Objective: Heat shock factor 1(HSF1), a transcriptional regulator of heat shock proteins(HSPs), is an attractive therapeutic target for cancer. However, only a few HSF1 inhibitors have been identified so far.Methods: The mRNA and protein levels of HSF1, HSPs, cleaved PARP, and phosphorylated HSF1 were examined by real-time PCR and Western blot. Forced expression, RNA interference, and immunofluorescence assay were used for mechanistic studies.Cell viability and apoptosis were measured by WST-8 assay and flow cytometry, respectively. Xenograft studies were performed in nude mice to evaluate the effect of dorsomorphin and an HSP90 inhibitor on tumor growth.Results: Dorsomorphin suppressed multiple stimuli-induced and constitutive HSPs expression in cancer cells. Mechanistic studies revealed that dorsomorphin reduced heat-induced HSP expression independent of adenosine monophosphate activated protein kinase. Dorsomorphin reduced heat-stimulated HSF1 Ser320 phosphorylation and nuclear translocation, as well as resting nuclear HSF1 levels in cancer cells. Dorsomorphin induced cancer cell apoptosis by inhibiting HSF1 expression. A structure-activity study revealed that the 4-pyridyl at the 3-site of the pyrazolo [1, 5-a]pyrimidine ring is critical for the anti-HSF1 activities of dorsomorphin. Dorsomorphin sensitized cancer cells to HSP90 and proteasome inhibitors and inhibited HSP70 expression induced by these inhibitors in vitro. In tumor-bearing nude mice, dorsomorphin enhanced HSP90 inhibitor-induced cancer cell apoptosis, tumor growth inhibition, and HSP70 expression.Conclusions: Dorsomorphin is an HSF1 inhibitor. It induces cancer cell apoptosis, sensitizes cancer cells to both HSP90 and proteasome inhibitors, and suppresses HSP upregulation by these drugs, which may prevent the development of drug resistance.Hence, dorsomorphin and its derivates may serve as potential precursors for developing drugs against cancer.展开更多
The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributo rs to the failure of sensory and motor functional recovery following spinal cord injury.Heat shock transcriptio...The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributo rs to the failure of sensory and motor functional recovery following spinal cord injury.Heat shock transcription factor 1(HSF1),a master regulator of the heat shock response,plays neurogenetic and neuroprotective roles in the damaged or diseased central nervous system.However,the underlying mechanism has not been fully elucidated.In the present study,we used a gecko model of spontaneous nerve regeneration to investigate the potential roles of gecko HSF1(gHSF1) in the regulation of neurite outgrowth and inflammatory inhibition of macrophages following spinal cord injury.gHSF1 expression in neurons and microglia at the lesion site increased dramatically immediately after tail amputation.gHSF1 ove rexpression in gecko primary neuro ns significantly promoted axonal growth by suppressing the expression of suppressor of cytokine signaling-3,and fa cilitated neuro nal survival via activation of the mitogen-activated extracellular signal-regulated kinase/extracellular regulated protein kinases and phosphatidylinositol 3-kinase/protein kinase B pathways.Furthermore,gHSF1 efficiently inhibited the macrophagemediated inflammatory response by inactivating 1kappa B-alpha/NF-kappaB signaling.Our findings show that HSF1 plays dual roles in promoting axonal regrowth and inhibiting leukocyte inflammation,and provide new avenues of investigation for promoting spinal co rd injury repair in mammals.展开更多
Aim Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflamma-tion. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of K...Aim Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflamma-tion. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of KB- α (IKB-α) -nuclear factor-KB (NF-KB) cascade, whereas interferon-γ (IFN-γ) acts through Janus kinase ( JAK)- signal transducer and activator of transcription 1 ( STAT1 ) signals. Heat shock factor 1 ( HSF1 ), a major regulator of heat shock protein transcription, has been shown to regulate the production of pro-inflammatory cytokines such as tumor necrosis factor-α(TNF-α) and interleukin-6 (IL-6). But it remains obscure whether and how HSF1 affects iNOS induction. Methods Western blot was used to measure the protein expression. The mRNA level was meas- ured by real time-PCR. Silence of HSF1 was achieved by small interfering RNA. Nitric oxide (NO) content and NF-KB binding activity were assayed by commercial kits. Chromatin immunoprecipitation (CHIP) was used to measure the binding activity of NF-KB and STAT1 to iNOS promoters. Results HSF1 inhibition or knockdown pre- vented the LPS- and/or IFN-γ-stimulated iNOS protein expression in cultured microglia. HSF1 inhibition blocked iNOS mRNA transcription. These inhibitory effects of HSF1 inhibition on iNOS expression were confirmed in brain tissues from endotoxemic mice. Further analysis showed that HSF1 inhibition had no effect on IKB-α degradation and NF-KB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-KB or STAT1 was also not affected by HSF1 inhibition. But HSF1 inhibition reduced the binding of NF-KB and STAT1 to their DNA elements. In addition, HSF1 inhibition reduced NF-KB and STAT1 bindings to iNOS promoter inside the LPS/IFN-γ-stimulated cells. Conclusions This preventing effect of HSF1 inhibition on iNOS mRNA transcription presents the necessary role of HSF1 in iNOS induction.展开更多
Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly u...Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.展开更多
The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosi...The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosis are summarized in the paper.展开更多
Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complex...Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.展开更多
基金Supported by National Natural Science Foundation of China(30560012)Foundation of General Project of Yunnan Province(2007C261M)Foundation of Yunnan Educational Committee(07C10700)~~
文摘[ Objective ] This study was to express and purify Arabidopsis thaliana heat shock factor HSF1. [ Method ] Using Escherichia coli M15 harboring HSF1 (pQE32/His6-HSF1, pREP4) as experimental materials, HSF1 was induced to express with isopropyl-β-D-galactoside (IPTG) ; then the expression product was purified using Ni-NTA-agarose affinity chromatography and analyzed by SDS-PAGE. [Result] HSF1 of Arabidopsis thaliana was successfully expressed and purified. [ Conclusion] This study provides materials for understanding the blinding site of HSF1 on Arabidopsis thaliana chromosome, further laying a good foundation for revealing the regulatory mechanism and physiological function of HSF1.
文摘Objective: To investigate the role of transcription factor Egr-1 in liver injury following hemorrhagic shock (HS) /resuscitation (R). Methods: Both Egr-1 knockout (KO) and wild-type (WT) mice were subjected to HS and HSR injuries. The expressions of TNF-α, IL-6, G-CSF and ICAM-1 mRNAs in the liver were examined by RT-PCR, and their serum levels were measured by ELISA. The liver inflammatory infiltration and liver injury in both Egr-1 WT and KO mice following HS/R were evaluated by liver MPO content, serum ALT level and histological examination. Results: Egr-1 inhibition resulted in less mRNA expression of TNF-α, IL-6 , G-CSF and ICAM-1 in the liver, and lower serum levels of TNF-α, IL-6, G-CSF and ICAM-1 antigens in Egr-1 KO mice following HS/R. The liver inflammatory infiltration and liver injury were less severe in Egr-1 KO mice following HS/R, as evidenced by lower serum ALT level, lower hepatic MPO content and histological manifestations. Conclusion: Our data suggest that transcription factor Egr-1 is involved in regulating the expression of inflammatory response genes and plays a role in liver injury following HS/R.
文摘Objective-To investigate the effects of heat shock transcription factor 1) gene on the constitutivety expressed αB-CrystaUin (aBC) in mice myocardium. Methods-The expression levels of constitutive aBC in HSF1 knockout (hsf1 - /- ) and HSFl wild type (As/1 + /+) mice myocardium were evaluated by western blot and immunohistochemistry. Results : The αBC levels in hsfl -/- and hsfl +/+ were 68. 42±4. 16, 100. 00±7. 58, respectively (P<0. 05, cytoso-lic fraction) , and 20. 53±1. 01, 37. 55±1. 91, respectively (P<0. 05, pellet fraction). The aBC signals decreased significantly in hsfl -/- myocardium when compared with those in hsfl +/+ myocardium stained with fluorescence immunohistochemistry. Conclusion-HSF1 is an important, but not the only factor, which mediates the constitutively expressed aBC.
基金Supported by National Natural Science Foundation of China(31260061,31060039)Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province(GXZD201601)+1 种基金Key Discipline Construction Project of Kunming UniversityNational College Students'Innovation Project of China
文摘[ Objective] This study aimed to screen target genes regulated by heat shock factor AtHsfAla in Arabidopsis thaliana. [ Method] Using AtHsfAla-in- serted mutant athsfala (SALK-068042) and wild-type A. thaliana seedlings as experimental materials, target genes regulated by heat shock factor AtHsfAla were screened by microarray assay. Differentially expressed genes were screened by multiple method. Specific functions of differentially expressed genes were analyzed by gene ontology (GO) analysis. Signal transduction pathways, in which differentia|ly expressed genes were involved, were analyzed by pathway analysis. Gene-gene interaction network was constructed by Signal-Net. [ Result] A total of 3 672 differentially expressed genes were screened out. Up-regulated differentially expressed genes were involved in 198 functions and 7 signal transduction pathways; down-regulated differentially expressed genes were involved in 94 functions and 10 signal transduction pathways. In the signal transduction network, it was found that cwlNV4 and HXK3 had relatively high ability of mediation; AT1 G14240 and cwlNV4 ex- hibited the most interactions with other genes, which were located in key positions throughout the gene-gene interaction network. [ Conclusion] Heat shock factor AtHsfAla regulates a large number of target genes in A. thaliana.
基金Supported by National Natural Science Foundation of China(31060039,31260061)Natural Science Foundation of Yunnan Province(2010ZC163)+1 种基金Project of Kunming University(YJL11025)Fund for Key Discipline Construction of Kunming University
文摘[ Objective ] Heat shock factors (HSFs) are the major transcription factors of eukaryotic heat shock responses. This study aims to investigate the adversity stress tolerance functions of Arabidopsis heat shock factor AtHsfAla, which has important significance for in-depth understanding of adversity stress tolerance mechanisms of plants and further utilization of heat shock factor genes. [Method] Genomic DNA of Arabidopsis was extracted with CTAB method and purified to obtain Arabidopsis DNA samples for in vitro site-specific recombination cloning ( Gateway cloning) to construct plant expression vector of heat shock factor AtHs- fAla. Firstly, donor vector pDONR 201/AtHsfAla was constructed based on attB and attP site-specific recombination method (BP reaction), to identify E. coli transformants harboring correct sequence of AtHsfAla by sequencing; secondly, plant expression vector pBTWG2/AttlsfAla overexpressing Arabidopsis heat shock factor AtHsfAla was constructed based on attL and attR site-specific recombination method (LR reaction), to screen E. coli transformants harboring target plasmid. [ Result] Plant expression vector of Arabidopsis heat shock factor gene AtHsfAla was constructed successfully. [ Conclusion] This study not only provided experimental materials for acquiring transgenic plants overexpressing heat shock transcription factor AtHsfAla, but also laid the foundation for further investigation of the diversity of adversity stress tolerance functions reanlated by HSFs.
基金supported by grants from the National Key Research and Development Program of China (Grant No.2017YFC1601702)China Postdoctoral Science Foundation (Grant No.2011M500825)
文摘Objective: Heat shock factor 1(HSF1), a transcriptional regulator of heat shock proteins(HSPs), is an attractive therapeutic target for cancer. However, only a few HSF1 inhibitors have been identified so far.Methods: The mRNA and protein levels of HSF1, HSPs, cleaved PARP, and phosphorylated HSF1 were examined by real-time PCR and Western blot. Forced expression, RNA interference, and immunofluorescence assay were used for mechanistic studies.Cell viability and apoptosis were measured by WST-8 assay and flow cytometry, respectively. Xenograft studies were performed in nude mice to evaluate the effect of dorsomorphin and an HSP90 inhibitor on tumor growth.Results: Dorsomorphin suppressed multiple stimuli-induced and constitutive HSPs expression in cancer cells. Mechanistic studies revealed that dorsomorphin reduced heat-induced HSP expression independent of adenosine monophosphate activated protein kinase. Dorsomorphin reduced heat-stimulated HSF1 Ser320 phosphorylation and nuclear translocation, as well as resting nuclear HSF1 levels in cancer cells. Dorsomorphin induced cancer cell apoptosis by inhibiting HSF1 expression. A structure-activity study revealed that the 4-pyridyl at the 3-site of the pyrazolo [1, 5-a]pyrimidine ring is critical for the anti-HSF1 activities of dorsomorphin. Dorsomorphin sensitized cancer cells to HSP90 and proteasome inhibitors and inhibited HSP70 expression induced by these inhibitors in vitro. In tumor-bearing nude mice, dorsomorphin enhanced HSP90 inhibitor-induced cancer cell apoptosis, tumor growth inhibition, and HSP70 expression.Conclusions: Dorsomorphin is an HSF1 inhibitor. It induces cancer cell apoptosis, sensitizes cancer cells to both HSP90 and proteasome inhibitors, and suppresses HSP upregulation by these drugs, which may prevent the development of drug resistance.Hence, dorsomorphin and its derivates may serve as potential precursors for developing drugs against cancer.
基金supported by the National Natural Science Foundation of China,No.31871211 (to YJunW)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The low intrinsic growth capacity of neurons and an injury-induced inhibitory milieu are major contributo rs to the failure of sensory and motor functional recovery following spinal cord injury.Heat shock transcription factor 1(HSF1),a master regulator of the heat shock response,plays neurogenetic and neuroprotective roles in the damaged or diseased central nervous system.However,the underlying mechanism has not been fully elucidated.In the present study,we used a gecko model of spontaneous nerve regeneration to investigate the potential roles of gecko HSF1(gHSF1) in the regulation of neurite outgrowth and inflammatory inhibition of macrophages following spinal cord injury.gHSF1 expression in neurons and microglia at the lesion site increased dramatically immediately after tail amputation.gHSF1 ove rexpression in gecko primary neuro ns significantly promoted axonal growth by suppressing the expression of suppressor of cytokine signaling-3,and fa cilitated neuro nal survival via activation of the mitogen-activated extracellular signal-regulated kinase/extracellular regulated protein kinases and phosphatidylinositol 3-kinase/protein kinase B pathways.Furthermore,gHSF1 efficiently inhibited the macrophagemediated inflammatory response by inactivating 1kappa B-alpha/NF-kappaB signaling.Our findings show that HSF1 plays dual roles in promoting axonal regrowth and inhibiting leukocyte inflammation,and provide new avenues of investigation for promoting spinal co rd injury repair in mammals.
文摘Aim Inducible nitric oxide synthase (iNOS) makes a great contribution to host defense and inflamma-tion. In many settings, lipopolysaccharide (LPS) induces iNOS expression through activation of the inhibitor of KB- α (IKB-α) -nuclear factor-KB (NF-KB) cascade, whereas interferon-γ (IFN-γ) acts through Janus kinase ( JAK)- signal transducer and activator of transcription 1 ( STAT1 ) signals. Heat shock factor 1 ( HSF1 ), a major regulator of heat shock protein transcription, has been shown to regulate the production of pro-inflammatory cytokines such as tumor necrosis factor-α(TNF-α) and interleukin-6 (IL-6). But it remains obscure whether and how HSF1 affects iNOS induction. Methods Western blot was used to measure the protein expression. The mRNA level was meas- ured by real time-PCR. Silence of HSF1 was achieved by small interfering RNA. Nitric oxide (NO) content and NF-KB binding activity were assayed by commercial kits. Chromatin immunoprecipitation (CHIP) was used to measure the binding activity of NF-KB and STAT1 to iNOS promoters. Results HSF1 inhibition or knockdown pre- vented the LPS- and/or IFN-γ-stimulated iNOS protein expression in cultured microglia. HSF1 inhibition blocked iNOS mRNA transcription. These inhibitory effects of HSF1 inhibition on iNOS expression were confirmed in brain tissues from endotoxemic mice. Further analysis showed that HSF1 inhibition had no effect on IKB-α degradation and NF-KB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-KB or STAT1 was also not affected by HSF1 inhibition. But HSF1 inhibition reduced the binding of NF-KB and STAT1 to their DNA elements. In addition, HSF1 inhibition reduced NF-KB and STAT1 bindings to iNOS promoter inside the LPS/IFN-γ-stimulated cells. Conclusions This preventing effect of HSF1 inhibition on iNOS mRNA transcription presents the necessary role of HSF1 in iNOS induction.
基金the National Natural Science Foundation of China, No. 30170326
文摘Increasing evidence suggests that heat shock factor 1 exerts endogenous protective effects on working memory under conditions of chronic psychological stress. However, the precise underlying mechanisms remain poorly understood. This study examined the protective factors affecting working memory in heat shock transcription factor 1 gene knockout mice. The results indicated that the number of correct T maze alternations decreased following mild chronic psychological stress in knockout mice. This change was accompanied by a decrease in neurogenesis and an increase in neuronal apoptosis in the hippocampal dentate gyrus. The number of correct T maze alternations was positively correlated with neurogenesis in hippocampal dentate gyrus, and negatively correlated with neuronal apoptosis. In wild type mice, no significant difference was detected in the number of correct T maze alternations or neuronal apoptosis in hippocampal dentate gyrus. These results indicate that the heat shock factor 1 gene has an endogenous protective role in working memory during mild chronic psychological stress associated with dentate gyrus neuronal apoptosis Moreover, dentate gyrus neurogenesis appears to participate in the protective mechanism.
文摘The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosis are summarized in the paper.
文摘Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.