The interfacial heat-transfer coefficient at casting/mould interface is a key factor that impacts the simulation accuracy of solidification progress.At present,the simulation result of using available data is comparat...The interfacial heat-transfer coefficient at casting/mould interface is a key factor that impacts the simulation accuracy of solidification progress.At present,the simulation result of using available data is comparatively different from the practice.In the current study,the methods of radial heating and electricity measurement under steady-state condition were employed to study the nature of interfacial heat-transfer between A356 Aluminum alloy and metal mould.The experimental results show that the interfacial heat-transfer between A356 Aluminum alloy and the outer mould drops linearly with time while that of A356 aluminum alloy and the inner mould increases with time during cooling.The interfacial heat-transfer coefficient between A356 aluminum alloy and mould is inversely proportional to the electrical resistance.展开更多
Fertilizer plants are most complex plants in the world (Rashid et al., 2013, Process Safety Progress) and its good opportunity to learn science from operations involved in these plants. Fluid mechanics and heat transf...Fertilizer plants are most complex plants in the world (Rashid et al., 2013, Process Safety Progress) and its good opportunity to learn science from operations involved in these plants. Fluid mechanics and heat transfer operations combination involved in fertilizer complexes are explored in this article.展开更多
The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell o...The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell of polymer electrolyte fuel cell, which is named as reaction surface in this study, with a 3D numerical simulation model solving many governing equations on the coupling phenomena in the cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface were also investigated. It was found in both 1D and 3D simulations that, the temperature rise (i.e., Treact-Tini) of the reaction surface from initial operation temperature at 70℃ was higher than that at 80℃ irrespective of flow rate of supply gas. The effect of relative humidity of supply gas on Treact- Tini near the inlet of the cell was small. Compared to the previous studies conducted under the similar operation conditions, the Treact - Tini calculated by 1D multi-plate heat-transfer model in this study as well as numerical simulation using 3D model was reasonable.展开更多
A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field i...A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab.展开更多
Porous particle flow is universal in nature and industry.However,in previous numerical simulations,porous particles have usually been assumed to be solid.It is necessary to study the flow and heat-transfer characteris...Porous particle flow is universal in nature and industry.However,in previous numerical simulations,porous particles have usually been assumed to be solid.It is necessary to study the flow and heat-transfer characteristics around porous particles because they are greatly different from those of impermeable particles.In this study,two-dimensional steady flow and heat transfer around and through a porous particle with a constant temperature placed in a cold fluid were numerically investigated.The effects of the Reynolds number(Re)and Darcy number(Da)on the flow and heat-transfer characteristics were investigated in detail.The investigated ranges of the parameters were 10≤Re≤40 and 10^(−6)≤Da≤10^(−2).It is sophisticated to simulate porous particles with traditional simulation methods because of their complicated structure.Therefore,the lattice Boltzmann method was used to solve the generalized macroscopic governing equations because of its simplicity.The drag coefficient decreased with increasing Re or Da,but the decrease was not prominent in the range 10^(−6)≤Da≤10^(−4).The heat-transfer efficiency of the front surface was much stronger than that of the rear surface.The heat-transfer efficiency between the particle and the fluid increased with increasing Re or Da.However,for 10^(−6)≤Da≤10^(−4),the increase was not prominent and the heat-transfer enhancement ratio was slightly larger than one.Furthermore,the effect of Da became more prominent at larger Re.In addition,new correlations for the drag coefficient and surface-averaged Nusselt number were obtained based on the simulated results.展开更多
Heat-transfer coefficients(HTC)on surfaces exposed to convection environments are often measured by transient techniques such as thermochromic liquid crystal(TLC)or infrared thermography.In these techniques,the surfac...Heat-transfer coefficients(HTC)on surfaces exposed to convection environments are often measured by transient techniques such as thermochromic liquid crystal(TLC)or infrared thermography.In these techniques,the surface temperature is measured as a function of time,and that measurement is used with the exact solution for unsteady,zero-dimensional(0-D)or one-dimensional(1-D)heat conduction into a solid to calculate the local HTC.When using the 0-D or 1-D exact solutions,the transient techniques assume the HTC and the free-stream or bulk temperature characterizing the convection environment to be constants in addition to assuming the conduction into the solid to be 0-D or 1-D.In this study,computational fluid dynamics(CFD)conjugate analyses were performed to examine the errors that might be invoked by these assumptions for a problem,where the free-stream/bulk temperature and the heat-transfer coefficient vary appreciably along the surface and where conduction into the solid may not be 0-D or 1-D.The problem selected to assess these errors is flow and heat transfer in a channel lined with a staggered array of pin fins.This conjugate study uses three-dimensional(3-D)unsteady Reynolds-averaged Navier-Stokes(RANS)closed by the shear-stress transport(SST)turbulence model for the gas phase(wall functions not used)and the Fourier law for the solid phase.The errors in the transient techniques are assessed by comparing the HTC predicted by the time-accurate conjugate CFD with those predicted by the 0-D and 1-D exact solutions,where the surface temperatures needed by the exact solutions are taken from the time-accurate conjugate CFD solution.Results obtained show that the use of the 1-D exact solution for the semi-infinite wall to give reasonably accurate“transient”HTC(less than 5%〇relative error).Transient techniques that use the 0-D exact solution for the pin fins were found to produce large errors(up to 160%relative error)because the HTC varies appreciably about each pin fin.This study also showed that HTC measured by transient techniques could differ considerably from the HTC obtained under steady-state conditions with isothermal walls.展开更多
Curzon and Ahlborn considered firstly the irreversibility of heat-transfer in the Carnot cycle, and derived the efficiency of a Carnot cycle at maximum power
变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的1...变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的110kV三相ONAN变压器上开展试验研究,使用分布式光纤测温(distributed temperature sensing,DTS)技术对运行状况下的绕组整体温度分布进行实时监测,分析绕组在ONAN冷却方式下的散热状况。在变压器启动初期,绕组各处散热量较低,温升速率较快。约2 h后,各饼散热量基本与损耗相一致,散热率可达98%以上,因此将这一阶段称为准稳态。准稳态阶段,绕组整体散热率基本一致。负载变化前期不同位置散热量的差异是温度梯度形成的主要原因。基于DTS手段及散热器进出口处油温,提出绕组每饼平均对流换热系数的计算方法,基于无量纲数建立绕组内外表面局部对流换热系数的计算方法,对不同位置、负载率下两种对流换热系数的变化规律进行分析获得了绕组运行过程中对流换热系数分布规律及变化趋势。展开更多
文摘The interfacial heat-transfer coefficient at casting/mould interface is a key factor that impacts the simulation accuracy of solidification progress.At present,the simulation result of using available data is comparatively different from the practice.In the current study,the methods of radial heating and electricity measurement under steady-state condition were employed to study the nature of interfacial heat-transfer between A356 Aluminum alloy and metal mould.The experimental results show that the interfacial heat-transfer between A356 Aluminum alloy and the outer mould drops linearly with time while that of A356 aluminum alloy and the inner mould increases with time during cooling.The interfacial heat-transfer coefficient between A356 aluminum alloy and mould is inversely proportional to the electrical resistance.
文摘Fertilizer plants are most complex plants in the world (Rashid et al., 2013, Process Safety Progress) and its good opportunity to learn science from operations involved in these plants. Fluid mechanics and heat transfer operations combination involved in fertilizer complexes are explored in this article.
文摘The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell of polymer electrolyte fuel cell, which is named as reaction surface in this study, with a 3D numerical simulation model solving many governing equations on the coupling phenomena in the cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface were also investigated. It was found in both 1D and 3D simulations that, the temperature rise (i.e., Treact-Tini) of the reaction surface from initial operation temperature at 70℃ was higher than that at 80℃ irrespective of flow rate of supply gas. The effect of relative humidity of supply gas on Treact- Tini near the inlet of the cell was small. Compared to the previous studies conducted under the similar operation conditions, the Treact - Tini calculated by 1D multi-plate heat-transfer model in this study as well as numerical simulation using 3D model was reasonable.
基金This work was financially sponsored by Jiangsu Youth Science Foundation (No.JDQ2001003).
文摘A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab.
基金supported by the National Natural Science Foundation of China(grant No.51922086).
文摘Porous particle flow is universal in nature and industry.However,in previous numerical simulations,porous particles have usually been assumed to be solid.It is necessary to study the flow and heat-transfer characteristics around porous particles because they are greatly different from those of impermeable particles.In this study,two-dimensional steady flow and heat transfer around and through a porous particle with a constant temperature placed in a cold fluid were numerically investigated.The effects of the Reynolds number(Re)and Darcy number(Da)on the flow and heat-transfer characteristics were investigated in detail.The investigated ranges of the parameters were 10≤Re≤40 and 10^(−6)≤Da≤10^(−2).It is sophisticated to simulate porous particles with traditional simulation methods because of their complicated structure.Therefore,the lattice Boltzmann method was used to solve the generalized macroscopic governing equations because of its simplicity.The drag coefficient decreased with increasing Re or Da,but the decrease was not prominent in the range 10^(−6)≤Da≤10^(−4).The heat-transfer efficiency of the front surface was much stronger than that of the rear surface.The heat-transfer efficiency between the particle and the fluid increased with increasing Re or Da.However,for 10^(−6)≤Da≤10^(−4),the increase was not prominent and the heat-transfer enhancement ratio was slightly larger than one.Furthermore,the effect of Da became more prominent at larger Re.In addition,new correlations for the drag coefficient and surface-averaged Nusselt number were obtained based on the simulated results.
基金This research was supported by the National Energy Technology Laboratory of the US Department of Energy with Robin Ames and Richard Dennis as the technical monitors.The authors are grateful for this support.
文摘Heat-transfer coefficients(HTC)on surfaces exposed to convection environments are often measured by transient techniques such as thermochromic liquid crystal(TLC)or infrared thermography.In these techniques,the surface temperature is measured as a function of time,and that measurement is used with the exact solution for unsteady,zero-dimensional(0-D)or one-dimensional(1-D)heat conduction into a solid to calculate the local HTC.When using the 0-D or 1-D exact solutions,the transient techniques assume the HTC and the free-stream or bulk temperature characterizing the convection environment to be constants in addition to assuming the conduction into the solid to be 0-D or 1-D.In this study,computational fluid dynamics(CFD)conjugate analyses were performed to examine the errors that might be invoked by these assumptions for a problem,where the free-stream/bulk temperature and the heat-transfer coefficient vary appreciably along the surface and where conduction into the solid may not be 0-D or 1-D.The problem selected to assess these errors is flow and heat transfer in a channel lined with a staggered array of pin fins.This conjugate study uses three-dimensional(3-D)unsteady Reynolds-averaged Navier-Stokes(RANS)closed by the shear-stress transport(SST)turbulence model for the gas phase(wall functions not used)and the Fourier law for the solid phase.The errors in the transient techniques are assessed by comparing the HTC predicted by the time-accurate conjugate CFD with those predicted by the 0-D and 1-D exact solutions,where the surface temperatures needed by the exact solutions are taken from the time-accurate conjugate CFD solution.Results obtained show that the use of the 1-D exact solution for the semi-infinite wall to give reasonably accurate“transient”HTC(less than 5%〇relative error).Transient techniques that use the 0-D exact solution for the pin fins were found to produce large errors(up to 160%relative error)because the HTC varies appreciably about each pin fin.This study also showed that HTC measured by transient techniques could differ considerably from the HTC obtained under steady-state conditions with isothermal walls.
文摘Curzon and Ahlborn considered firstly the irreversibility of heat-transfer in the Carnot cycle, and derived the efficiency of a Carnot cycle at maximum power
文摘变压器热点温度作为运行经济性、安全性的关键指标,是设备在线监测及状态评估中的重点。该文对变压器内部散热进行研究,着眼于饼式绕组及其油道结构,基于能量流向建立绕组温度变化的物理模型。基于这一模型,在一台内置分布式传感光纤的110kV三相ONAN变压器上开展试验研究,使用分布式光纤测温(distributed temperature sensing,DTS)技术对运行状况下的绕组整体温度分布进行实时监测,分析绕组在ONAN冷却方式下的散热状况。在变压器启动初期,绕组各处散热量较低,温升速率较快。约2 h后,各饼散热量基本与损耗相一致,散热率可达98%以上,因此将这一阶段称为准稳态。准稳态阶段,绕组整体散热率基本一致。负载变化前期不同位置散热量的差异是温度梯度形成的主要原因。基于DTS手段及散热器进出口处油温,提出绕组每饼平均对流换热系数的计算方法,基于无量纲数建立绕组内外表面局部对流换热系数的计算方法,对不同位置、负载率下两种对流换热系数的变化规律进行分析获得了绕组运行过程中对流换热系数分布规律及变化趋势。